问题 A: Assembly Required

时间限制: 1 Sec  内存限制: 128 MB

提交: 49  解决: 25

[提交] [状态] [命题人:admin]

题目描述

Princess Lucy broke her old reading lamp, and needs a new one. The castle orders a shipment of parts from the Slick Lamp Parts Company, which produces interchangable lamp pieces.

There are m types of lamp pieces, and the shipment contained multiple pieces of each type. Making a lamp requires exactly one piece of each type. The princess likes each piece with some value, and she likes a lamp as much as the sum of how much she likes each of the pieces.

You are part of the castle staff, which has gotten fed up with the princess lately. The staff needs to propose k distinct lamp combinations to the princess (two lamp combinations are considered distinct if they differ in at least one piece). They decide to propose the k combinations she will like the least. How much will the princess like the k combinations that the staff proposes?

输入

The first line of input contains a single integer T (1 ≤ T ≤ 10), the number of test cases. The first line of each test case contains two integers m (1 ≤ m ≤ 100), the number of lamp piece types and k (1 ≤ k ≤ 100), the number of lamps combinations to propose. The next m lines each describe the lamp parts of a type;

they begin with ni (2 ≤ ni ≤ 100), the number of pieces of this type, followed by ni integers vi,1 ,... , vi,ni(1 ≤ vi,j ≤ 10,000) which represent how much the princess likes each piece. It is guaranteed that k is no greater than the product of all ni ’s.

输出

For each test case, output a single line containing k integers that represent how much the princess will like the proposed lamp combinations, in nondecreasing order.

样例输入

复制样例数据

2
2 2
2 1 2
2 1 3
3 10
4 1 5 3 10
3 2 3 3
5 1 3 4 6 6

样例输出

2 3
4 5 5 6 6 7 7 7 7 7

提示

In the first case, there are four lamp pieces, two of each type. The worst possible lamp has value 1 + 1 = 2,

while the second worst possible lamp has value 2 + 1 = 3.

题意:

第一行一个样例数T

第二行 m 和 k

接下来是m行 第一个数字n 表示这行有n个数

要求从每行选一个数 组成一个数

求前k个最小的数

思路 :如果一行选一个再比较这样肯定不行啦

既然我们只要前k个最小的

那么只需要把一行的每个数字去加上上一行求出的前k个最小的数,

因为最小值肯定是从这些数里产生

这样每次遍历复杂度最大也才 m <= 100 * n <= 100 * k <= 100   1e6? (瞎算一通

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long ll;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn = 10005;
int n,m,k;
int x;
int cnt,tot,flag;
int ans[maxn];
int pre[maxn];
int main() {
    int t;
    read(t);
    while(t--){
      memset(ans,0,sizeof ans); //初始化
      memset(pre,0,sizeof pre);
      cnt = 1;
      read2(m,k);
      for(int i = 0; i < m; i++){
        for(int j = 0; j < k ; j++){
           pre[j] = ans[j] ;   //pre[] 记录上一行加完后的前k个数
        }
        read(n);
        tot = 0;
        for(int j = 0; j < n; j++){
          read(x);
          for(int u = 0; u < cnt ; u++){
              ans[tot++] = x + pre[u];   // 输入的数加上上一行的前k个数
          }
        }
        sort(ans,ans + tot); //从小到大排序
        cnt = min(k,tot);  //如果cnt 超过了k 那就按k 来算了
      }
      for(int i = 0; i < k; i++){ //取前k个输出
        printf("%d%c", ans[i], i == k - 1 ? '\n' : ' ');
      }
    }
}

Assembly Required【思维】的更多相关文章

  1. upc组队赛5 Assembly Required【思维】

    Assembly Required 题目描述 Princess Lucy broke her old reading lamp, and needs a new one. The castle ord ...

  2. Problem A: Assembly Required K路归并

    Problem A: Assembly Required Princess Lucy broke her old reading lamp, and needs a new one. The cast ...

  3. .NET的类型层次查看工具

    上周为了快速了解一个.NET的库而需要查看其类型层次.假如要在文章中表示一个类型层次,还是用文本比较舒服,截图始终是不方便.Reflector虽然能够显示类型层次,但我无法方便的把显示出来的类型层次转 ...

  4. asp.net/wingtip/创建数据访问层

    一. 什么是数据访问层 在wingtip项目中,数据访问层是对以下三者的总称:1. product类等数据相关的实体类(class)2. 数据库(database),对实体类成员的存储3. 上述二者的 ...

  5. [Golang] GoConvey测试框架使用指南

    GoConvey 是一款针对Golang的测试框架,可以管理和运行测试用例,同时提供了丰富的断言函数,并支持很多 Web 界面特性. GoConvey 网站 : http://smartystreet ...

  6. Python爬虫之抓取豆瓣影评数据

    脚本功能: 1.访问豆瓣最受欢迎影评页面(http://movie.douban.com/review/best/?start=0),抓取所有影评数据中的标题.作者.影片以及影评信息 2.将抓取的信息 ...

  7. Dynamics 365 Customer Engagement导入解决方案时出错:Microsoft.Crm.CrmException: Plug-in assembly does not contain the required types or assembly content cannot be updated.

    我是微软Dynamics 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...

  8. 为C# as 类型转换及Assembly.LoadFrom埋坑!

    背景: 不久前,我发布了一个调试工具:发布:.NET开发人员必备的可视化调试工具(你值的拥有) 效果是这样的: 之后,有小部分用户反映,工具用不了(没反应或有异常)~~~ 然后,建议小部分用户换个电脑 ...

  9. Assembly - Registers

    Processor operations mostly involve processing data. This data can be stored in memory and accessed ...

随机推荐

  1. Oracle tablespace 创建表空间

    定义: 表空间是一个逻辑概念,它的所有数据和结构信息都存储在一个或多个数据文件中,表空间属于数据库的一部分.数据库自带有几个表空间,如system,temp.一般系统将创建几个私用或业务的表空间. 模 ...

  2. c++试题2

    一.写出下列程序的运行结果(40 分) 1.for(i=1;i<5;i++); cout << “OK” << endl; 程序执行后的输出结果是:  OK    ___ ...

  3. 分布式事务TransactionScope

    分布式事务TransactionScope 以下是分布式事务的所有情况的例子了,包含了事务套事务,事务套存储过程事务,经过测试,TransactionScope对于分布式事务的各种情况支持的很好. 使 ...

  4. 【ArcGIS for Server】制作并发布GP服务--缓冲分析为例

    https://www.cnblogs.com/d2ee/p/3641279.html https://www.jianshu.com/p/5331fa708fe5 https://www.cnblo ...

  5. ios安装ipa与安卓安装apk

    ideviceinstaller -i .ipa包所在的路径 环境搭建:Mac上安装brew(brew里面有很多命令,可以安装自己想用的命令) 安装命令如下:curl -LsSf http://git ...

  6. Java项目引用外部jar包时,使用bat启动

    1.将项目导出为jar包 1)点击项目—>右击—>点击Export—>进入export页面 2)点击JAR file——>Next——>勾选项目——>选择jar包存 ...

  7. Git命令行基本操作

    Git--- download网址:https://git-scm.com/downloads 0. 安装Git 网上有很多Git安装教程,如果需要图形界面,windows下建议使用TortoiseG ...

  8. [sql]sql的select字符串切割

    可以经常看看 mysql的refman,写的很棒 sql基础操作 查看表结构 show create table desc table show full columns from test1; li ...

  9. 【Common】NO.81.Note.1.Common.1.002-【文章摘要】

    1.0.0 Summary Tittle:[Common]NO.81.Note.1.Common.1.002-[文章摘要] Style:Common Series:Common Since:2018- ...

  10. 【UML】NO.53.EBook.6.UML.2.001-【Thinking In UML 大象 第二版】- 概述

    1.0.0 Summary Tittle:[UML]NO.53.EBook.6.UML.2.001-[Thinking In UML 大象 第二版]- 概述 Style:DesignPattern S ...