[离散时间信号处理学习笔记] 9. z变换性质
z变换描述
$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$
序列$x[n]$经过z变换后得到复变函数$X(z)$,该函数的收敛域为$R_x$
线性
z变换的线性性质
$ax_1[n]+bx_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} aX_1(z)+bX_2(z),\quad ROC\ contains\ R_{x_1}\cap R_{x_2}$
证明:
$\begin{align*}\sum_{n=-\infty}^{\infty}(ax_1[n]+bx_2[n])z^{-n}
&=\sum_{n=-\infty}^{\infty}ax_1[n]z^{-n}+\sum_{n=-\infty}^{\infty}ax_2[n]z^{-n}\\
&=aX_1(z)+bX_2(z)
\end{align*}$
$X_1(z)$以及$X_2(z)$的收敛域分别为$R_{x_1}$以及$R_{x_2}$,不过他们两个组合后可能会使得某些极点被消除,即线性组合后的z变换的收敛域与相交收敛域相比,可能会多出这些可能被消除的极点,所以这里用“包含(contains)”。
时移
z变换的时移性质
$x[n-n_0]\stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_0}X(z),\quad ROC=R_x$
证明:
$\begin{align*}\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}
&=\sum_{m=-\infty}^{\infty}x[m]z^{-(m+n_0)}\quad letting\ m=n-n_0\\
&=\sum_{m=-\infty}^{\infty}x[m]z^{-m}z^{-n_0}\\
&=z^{-n_0}X(z)
\end{align*}$
指数相乘
指数相乘性质
$z_0^nx[n]\stackrel{\mathcal{Z}}{\longleftrightarrow}X\left(\frac{z}{z_0}\right),\quad ROC=|z_0|R_x $
证明:
$\begin{align*}\sum_{n=-\infty}^{\infty}z_0^nx[n]z^{-n}
&=\sum_{n=-\infty}^{\infty}x[n]\left(\frac{z}{z_0}\right)^{-n}\\
&=X\left(\frac{z}{z_0}\right)
\end{align*}$
微分
微分性质
$nx[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} –z\frac{dX(z)}{dz},\quad ROC=R_x$
证明:
$\begin{align*}\sum_{n=-\infty}^{\infty}nx[n]z^{-n}
&=\sum_{n=-\infty}^{\infty}nx[n]z^{-n}\\
&=-z\sum_{n=-\infty}^{\infty}(-n)x[n]z^{-n-1}\\
&=-z\sum_{n=-\infty}^{\infty}\frac{d\left(x[n]z^{-n}\right)}{dz}\\
&=-z\frac{d\left(\displaystyle{\sum_{n=-\infty}^{\infty}x[n]z^{-n}}\right)}{dz}\\
&=-z\frac{dX(z)}{dz}
\end{align*}$
共轭
共轭性质
$x^*[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^{*}(z^*),\quad ROC=R_x$
证明:
$\begin{align*}
\sum_{n=-\infty}^{\infty}x^*[n]z^{-n}
&=\sum_{n=-\infty}^{\infty}(|x[n]|cos\angle x[n]-i|x[n]|sin\angle x[n])[|z^{-n}|cos\angle (z^{-n})+i|z^{-n}|sin\angle(z^{-n})]\\
&=\sum_{n=-\infty}^{\infty}|x[n]|(cos \phi - isin\phi)|z^{-n}|[cos(-n\theta)+isin(-n\theta)] \quad letting\ \phi=\angle x[n],\theta=\angle (z)\\
&=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|{(cos\phi cos(-n\theta)+sin\phi sin(-n\theta)]+i[cos\phi sin(-n\theta)-sin\phi cos(-n\theta)]}\\
&=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|[cos(\phi+n\theta)+isin(-n\theta-\phi)]\\
&=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|[cos(\phi+n\theta)-isin(n\theta+\phi)]\\
\end{align*}$
又已知
$\displaystyle{\sum_{n=-\infty}^{\infty}x[n]z^{-n}=\sum_{n=-\infty}^{\infty}|x[n]z^{-n}|[cos(\phi-n\theta)+isin(\phi-n\theta)]}$
对比两个式子的结果,得证。
时间倒置
时间倒置性质
$x[-n]\stackrel{\mathcal{Z}}{\longleftrightarrow}X\left( \frac{1}{z} \right),\quad ROC=\frac{1}{R_x}$
证明:
$\begin{align*}
\sum_{n=-\infty}^{\infty}x[-n]z^{-n}
&=\sum_{m=-\infty}^{\infty}x[m]z^{m}\quad letting\ m=-n\\
&=\sum_{m=-\infty}^{\infty}x[m]\left( \frac{1}{z}\right )^m\\
&=X\left(\frac{1}{z} \right )
\end{align*}$
卷积
卷积性质
$x_1[n]*x_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X_1(z)X_2(z),\quad ROC\ contains\ R_{x_1}\cap R_{x_2}$
证明:
$\begin{align*}
\sum_{n=-\infty}^{\infty}(x_1[n]*x_2[n])z^{-n}
&= \sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty}x_1[k]x_2[n-k]\right)z^{-n}\\
&= \sum_{k=-\infty}^{\infty}x_1[k]\left(\sum_{n=-\infty}^{\infty}x_2[n-k]z^{-n} \right )\\
&= \sum_{k=-\infty}^{\infty}x_1[k]\left(\sum_{m=-\infty}^{\infty}x_2[m]z^{-m-k} \right )\quad letting\ m=n-k \\
&= \left(\sum_{k=-\infty}^{\infty}x_1[k]z^{-k} \right )\left(\sum_{m=-\infty}^{\infty}x_2[m]z^{-m} \right )\\
&= X_1(z)X_2(z)
\end{align*}$
[离散时间信号处理学习笔记] 9. z变换性质的更多相关文章
- [离散时间信号处理学习笔记] 10. z变换与LTI系统
我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displays ...
- [离散时间信号处理学习笔记] 7. z变换
z变换及其收敛域 回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为 $X(e^{j\ome ...
- [离散时间信号处理学习笔记] 8. z逆变换
z逆变换的计算为下面的复数闭合曲线积分: $x[n] = \displaystyle{\frac{1}{2\pi j}}\oint_{C}X(z)z^{n-1}dz$ 式中$C$表示的是收敛域内的一条 ...
- [离散时间信号处理学习笔记] 3. 一些基本的LTI系统
首先我们需要先对离散时间系统进行概念上的回顾: $y[n] = T\{ x[n] \}$ 上面的式子表征了离散时间系统,也就是把输入序列$x[n]$,映射称为$y[n]$的输出序列. 不过上述式子也可 ...
- SharpGL学习笔记(六) 裁剪变换
在OpenGL中,除了视景体定义的6个裁剪平面(上下左右前后)外, 用户还可以定义一个或者多个附加的裁剪平面,以去掉场景中无关的目标. 附加平面裁剪函数原型如下: ClipPlane(OpenGL.G ...
- SharpGL学习笔记(五) 视口变换
视口变换主是将视景体内投影的物体显示到二维的视口平面上. 在计算机图形学中,它的定义是将经过几何变换, 投影变换和裁剪变换后的物体显示于屏幕指定区域内. 前面我们讨论过的透视投影, 正射投影, 它们都 ...
- OpenCV学习笔记(14)——轮廓的性质
提取一些经常使用的对象特征 1.长宽比 边界矩形的宽高比 x,y,w,h = cv2.boundingRect(cnt) a ...
- SharpGL学习笔记(七) OpenGL的变换总结
笔者接触OpenGL最大的困难是: 经常调试一份代码时, 屏幕漆黑一片, 也不知道结果对不对,不知道如何是好! 这其实就是关于OpenGL"变换"的基础概念没有掌握好, 以至于对& ...
- z 变换
1. z 变换 单位脉冲响应为 \(h[n]\) 的离散时间线性时不变系统对复指数输入 \(z^n\) 的响应 \(y[n]\) 为 \[ \tag{1} y[n] = H(z) z^{n}\] 式中 ...
随机推荐
- Python 中的 10 个常见安全漏洞,以及如何避免(上)
简评:编写安全代码很困难,当你学习一个编程语言.模块或框架时,你会学习其使用方法. 在考虑安全性时,你需要考虑如何避免被滥用,Python 也不例外,即使在标准库中,也存在用于编写应用的不良实践.然而 ...
- iScroll.js 向上滑动异步加载数据回弹问题
iScroll是一款用于移动设备web开发的一款插件.像缩放.下拉刷新.滑动切换等移动应用上常见的一些效果都可以轻松实现. 现在最新版本是5.X,官网这里:http://iscrolljs.com/ ...
- Jmeter(三十六)_运行过程中改变负载
顾名思义,jmeter在做性能测试时,可以在不停止脚本的情况下修改负载压力,达到期望的测试效果.我们将通过Constant Throughput Timer(吞吐量计时器)和Beanshell服务器来 ...
- C++常用代码优化策略
C++代码常用的优化策略 1.不存在指向空值的引用,意味着引用比指针的效率更高,因为在使用引用之前不需要测试它的合法性:指针可以被重新赋值以指向另一个不同的对象,但是引用总是指向它初始化时指定的对象. ...
- Codeforces Round #521 (Div. 3)
B 题过的有些牵强,浪费了很多时间,这种题一定想好思路和边界条件再打,争取一发过. D 题最开始读错题,后面最后发现可以重复感觉就没法做了,现在想来,数据量大,但是数据范围小枚举不行,二分还是可以的 ...
- Python-类的继承与派生
python中类的继承分为:单继承和多继承 class ParentClass1: #定义父类 pass class ParentClass2: #定义父类 pass class SubClass1( ...
- Git更新本地仓库
1.查看远程仓库git remote -v2.从远程获取最新版本到本地git fetch origin master:temp3.比较本地的仓库与远程仓库的区别git diff temp4.合并tem ...
- Vue之小入门
Vue之小入门 <div id="app">{{ greeting }}</div> <script> let oDiv = document. ...
- 分布式事务 spring 两阶段提交 tcc
请问分布式事务一致性与raft或paxos协议解决的一致性问题是同一回事吗? - 知乎 https://www.zhihu.com/question/275845393 分布式事务11_TCC 两阶段 ...
- API的设计与安全
前后端分离是个浪潮,原来只有APP客户端会考虑这些,现在连Web都要考虑前后端分离 . 这里面不得不谈的就是API的设计和安全性,这些个问题不解决好,将会给服务器安全和性能带来很大威胁 . API的设 ...