[问题2015S02] 复旦高等代数 II(14级)每周一题(第三教学周)
[问题2015S02] 设 \(a,b,c\) 为复数且 \(bc\neq 0\), 证明下列 \(n\) 阶方阵 \(A\) 可对角化:
\[A=\begin{pmatrix} a & b & & & & \\ c & a & b & & & \\ & c & a & b & & \\ & & \ddots & \ddots & \ddots & \\ & & & c & a & b\\ & & & & c & a \end{pmatrix}.\]
问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0
[问题2015S02] 复旦高等代数 II(14级)每周一题(第三教学周)的更多相关文章
- [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...
- [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)
[问题2015S08] 设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...
- [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)
[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...
- [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)
问题2014S02 设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
随机推荐
- redis 安装(centos 6.4)
我使用6.4系统,mark一下,其他版本应该也一样. wget wget http://download.redis.io/releases/redis-3.0.6.tar.gz make make ...
- rename 快速移动文件或者文件夹
有几种情况: 1.对于文件,rename可以在不同盘符之间移动. 2.对于空文件夹,rename也可以在不同盘符之间移动.但是目标文件夹的父目录必须存在. 3.对于非空文件夹,只能在同一盘符下移动. ...
- HashMap实现原理分析
1. HashMap的数据结构 数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端. 数组 数组存储区间是连续的,占用内存严重,故空间复杂的很大.但数组的二分查找时间复杂度小,为O(1 ...
- 杭电ACM 1196
#include<stdio.h>int main(){ int num,j,k,s,f; int a[7]={0,0,0,0,0,0,0}; while(scanf("%d&q ...
- 【转】CSRF攻击的应对之道
CSRF 背景与介绍CSRF(Cross Site Request Forgery, 跨站域请求伪造)是一种网络的攻击方式,它在 2007 年曾被列为互联网 20 大安全隐患之一.其他安全隐患,比如 ...
- iScroll.js几个问题及其解决办法
1.在一个页面中需要点击tab切换,而且每个切换的内容都需要下拉刷新加载,这个时候需要在点击的时候用到myScroll.refresh();这个函数,刷新iScroll.js这个函数. 2.在页面中有 ...
- Python开发【第九章】:线程、进程和协程
一.线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务 1.t ...
- WebSocket IO和后端建立长连接,即时接受后端消息
https://github.com/TooTallNate/Java-WebSocket ant得到java_websocket.jar改名为WebSocket.jar放到 https://gith ...
- 千万级SQL Server数据库表分区的实现
千万级SQL Server数据库表分区的实现 2010-09-10 13:37 佚名 数据库 字号:T | T 一般在千万级的数据压力下,分区是一种比较好的提升性能方法.本文将介绍SQL Server ...
- selected对话框全选
selected对话框全选 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...