第十三篇:K-Means 聚类算法原理分析与代码实现
前言
在前面的文章中,涉及到的机器学习算法均为监督学习算法。
所谓监督学习,就是有训练过程的学习。再确切点,就是有 "分类标签集" 的学习。
现在开始,将进入到非监督学习领域。从经典的聚类问题展开讨论。所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数)。
本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现。
现实中的聚类分析问题 - 总统大选
假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比),而 Mr.MKN 的为47%,而剩下的一部分出于【种种原因】没有投票。
做为其中某个阵营的人,自然是希望能够尽可能的争取到这些剩余的票 -因为这完全可能影响最终选举结果。
然而,你不可能争取到这些人的所有投票,因为你满足某个群体的人,也许就伤害到了另一群人的利益。
一个很不错的想法是将这些人分为 K 个群体,然后主要对其中人数最多的几个群体做工作。
-- 这,就需要使用到聚类的策略了。
聚类策略是搜集剩余选民的用户信息(各种满意/不满意的信息),将这些信息输入进聚类算法,然后对聚类结果中人数最多的簇的选民做思想工作。
可能你会发现某个簇的选民都是一个社区的,一个宗教信仰的,或者具有某些共性。这样就方便各种各样的拉票活动了。
K-Means 聚类算法
K,指的是它可以发现 K 个簇;Means,指的是簇中心采用簇所含的值的均值来计算。
下面先给出伪代码:
创建 k 个点作为起始质心 (随机选择):
当任意一个点的簇分配结果发生改变的时候:
对数据集中的每个数据点:
对每个质心:
计算质心与数据点之间的距离
将数据点分配到距其最近的簇
对每一个簇:
求出均值并将其更新为质心
然后是一个具体实现Python程序:
#!/usr/bin/env python
# -*- coding:UTF-8 -*- '''
Created on 20**-**-** @author: fangmeng
''' from numpy import * #==================================
# 输入:
# fileName: 数据文件名(含路径)
# 输出:
# dataMat: 数据集
#==================================
def loadDataSet(fileName):
'载入数据文件' dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine)
dataMat.append(fltLine)
return dataMat #==================================================
# 输入:
# vecA: 样本a
# vecB: 样本b
# 输出:
# sqrt(sum(power(vecA - vecB, 2))): 样本距离
#==================================================
def distEclud(vecA, vecB):
'计算样本距离' return sqrt(sum(power(vecA - vecB, 2))) #===========================================
# 输入:
# dataSet: 数据集
# k: 簇个数
# 输出:
# centroids: 簇划分集合(每个元素为簇质心)
#===========================================
def randCent(dataSet, k):
'随机初始化质心' n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids #===========================================
# 输入:
# dataSet: 数据集
# k: 簇个数
# distMeas: 距离生成器
# createCent: 质心生成器
# 输出:
# centroids: 簇划分集合(每个元素为簇质心)
# clusterAssment: 聚类结果
#===========================================
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
'K-Means基本实现' m = shape(dataSet)[0]
# 簇分配结果矩阵。一列为簇分类结果,一列为误差。
clusterAssment = mat(zeros((m,2)))
# 创建原始质心集
centroids = createCent(dataSet, k)
# 簇更改标记
clusterChanged = True while clusterChanged:
clusterChanged = False # 每个样本点加入其最近的簇。
for i in range(m):
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2 # 更新簇
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
centroids[cent,:] = mean(ptsInClust, axis=0) return centroids, clusterAssment def main():
'k-Means聚类操作展示' datMat = mat(loadDataSet('/home/fangmeng/testSet.txt'))
myCentroids, clustAssing = kMeans(datMat, 4) #print myCentroids
print clustAssing if __name__ == "__main__":
main()
测试结果:

K-Means性能优化
主要有两种方式:
1. 分解最大SSE (误差平方和)的簇。
PS:直接在簇内执行一次 k=2 的 K-Means 聚类即可。
2. 合并距离最小的簇 或者 合并SSE增幅最小的两个簇。
基于这两种最基本优化策略,有一种更为科学的聚类算法 - 二分K-Means算法,下面进行详细介绍。
二分K-Means算法
该算法大致思路为:首先将所有的点作为一个簇,然后将该簇一分为二。之后选择其中一个簇继续划分。
选择方法自然是选择SSE增加更小的那个方式。
如此不断 "裂变",直到得到用户指定数目的簇。
伪代码:
将所有点视为一个簇:
当簇数目小于k时:
对于每一个簇:
计算SSE
在给定的簇上面进行 k= 的K-Means聚类
计算将簇一分为二后的SSE
选择使得误差最小的那个簇进行划分操作
具体实现函数:
#======================================
# 输入:
# dataSet: 数据集
# k: 簇个数
# distMeas: 距离生成器
# 输出:
# mat(centList): 簇划分集合(每个元素为簇质心)
# clusterAssment: 聚类结果
#======================================
def biKmeans(dataSet, k, distMeas=distEclud):
'二分K-Means聚类算法' m = shape(dataSet)[0]
# 聚类结果数据结构
clusterAssment = mat(zeros((m,2)))
# 原始质心
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0] # 统计原始SSE
for j in range(m):
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2 # 循环执行直到得到k个簇
while (len(centList) < k):
# 最小SSE
lowestSSE = inf
# 找到最适合分裂的簇进行分裂
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1]) if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit # 本次划分信息
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit # 更新簇集
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
# 更新聚类结果集
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss return mat(centList), clusterAssment
测试结果:

小结
1. KMeans的用途很广泛,再举个例子吧:比如你计划要去中国100个城市旅游,那么如何规划路线呢?
---> 可以采用聚类的方法,将这些城市聚到几个簇里面,然后一个 ”簇"一个 "簇" 的进行游玩。质心就相当于机场,误差平方和就相当于游玩城市到质心的距离 :)
2. KMeans算法是很常用的聚类算法,然而,这里也要提一提它的缺点:初始质心及K值的指定对结果影响较大。这个话题也衍生出很多研究论文,有兴趣的读者可以进一步研究。
第十三篇:K-Means 聚类算法原理分析与代码实现的更多相关文章
- K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- 【机器学习】:Kmeans均值聚类算法原理(附带Python代码实现)
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解. 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给 ...
- 第一篇:K-近邻分类算法原理分析与代码实现
前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. ...
- 第七篇:Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- 第十四篇:Apriori 关联分析算法原理分析与代码实现
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文 ...
- Apriori 关联分析算法原理分析与代码实现
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文 ...
- Kmeans聚类算法原理与实现
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...
- 【转】K-Means聚类算法原理及实现
k-means 聚类算法原理: 1.从包含多个数据点的数据集 D 中随机取 k 个点,作为 k 个簇的各自的中心. 2.分别计算剩下的点到 k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇.两 ...
随机推荐
- Linux防火墙的关闭和开启(转)
1) 重启后生效 开启: chkconfig iptables on 关闭: chkconfig iptables off 2) 即时生效,重启后失效 开启: service iptables sta ...
- sqlserver学习笔记(一)—— 登录本机sqlserver、启动和停止sqlserver服务、创建和删除数据库
(重要参考:51自学网——SQL Server数据库教程) 首先按照网上教程安装好sqlserver,打开登录 登录本机sqlserver:①. ②localhost ③127.0.0.1 启动和停止 ...
- android 实现代码混淆
对于使用签名的apk,经常使用的反编译之后还是能查看class文件的代码实现.对于反编译可查看个人的博客点击打开链接 使用代码混淆就能是这样的常规反编译失效.很多其它混淆机制见官网http://dev ...
- 为什么在c语言中使用gets函数是危险的
If you have code like this: char s[10]; gets( s ); and you type in more than 10 characters when th ...
- Linux strace命令使用详解
strace是Linux环境下的一款程序调试工具,用来监察一个应用程序所使用的系统调用及它所接收的系统信息. 可谓是 linux 下的调试利器,不仅可以用来找程序错误,系统为什么挂死了,命令为什么报错 ...
- 实现在edittext中任意插入图片
Myedittext: public class MyEditText extends EditText { public MyEditText(Context context) { super(co ...
- 【Hadoop】HA 场景下访问 HDFS JAVA API Client
客户端需要指定ns名称,节点配置,ConfiguredFailoverProxyProvider等信息. 代码示例: package cn.itacst.hadoop.hdfs; import jav ...
- chrome 控制台js调试与断点调试
这篇文章是根据目前 chrome 稳定版(19.0.1084.52 m)写的,因为 google 也在不断完善chrome developer tool,所以 chrome 版本不同可能稍有差 ...
- [uboot]Issue list
- ps aux|awk -F'[ ]+' '$3>90{print $2}'|xargs -n1 kill -9
ps aux|awk -F'[ ]+' '$3>90{print $2}'|xargs -n1 kill -9