题目给张R×C的地图,地图上*表示泥地、.表示草地,问最少要几块宽1长任意木板才能盖住所有泥地,木板可以重合但不能盖住草地。

把所有行和列连续的泥地(可以放一块木板铺满的)看作点且行和列连续泥地分别作为XY部,每一块泥地看作边。这样就构造出了一个二分图。

那么,问题就是在这个二分图中就是选出最少的点覆盖所有的边,即二分图最小点覆盖集,而二分图最小点覆盖集=二分图最大匹配。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 2555
#define MAXM 2555*4 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} char map[][];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=; i<n; ++i){
for(int j=; j<m; ++j) scanf(" %c",&map[i][j]);
}
int x=,y=,d[][]={};
for(int i=; i<n; ++i){
for(int j=; j<m; ){
if(map[i][j]=='.') ++j;
else{
++x;
while(j<m && map[i][j]=='*') d[i][j++]=x;
}
}
}
NE=;
memset(head,-,sizeof(head));
for(int j=; j<m; ++j){
for(int i=; i<n; ){
if(map[i][j]=='.') ++i;
else{
++y;
while(i<n && map[i][j]=='*') addEdge(d[i++][j],y+x,);
}
}
}
vs=; vt=x+y+; NV=vt+;
for(int i=; i<=x; ++i) addEdge(vs,i,);
for(int i=; i<=y; ++i) addEdge(i+x,vt,);
printf("%d\n",ISAP());
return ;
}

POJ2226 Muddy Fields(二分图最小点覆盖集)的更多相关文章

  1. [POJ] 2226 Muddy Fields(二分图最小点覆盖)

    题目地址:http://poj.org/problem?id=2226 二分图的题目关键在于建图.因为“*”的地方只有两种木板覆盖方式:水平或竖直,所以运用这种方式进行二分.首先按行排列,算出每个&q ...

  2. POJ1325 Machine Schedule(二分图最小点覆盖集)

    最小点覆盖集就是在一个有向图中选出最少的点集,使其覆盖所有的边. 二分图最小点覆盖集=二分图最大匹配(二分图最大边独立集) 这题A机器的n种模式作为X部的点,B机器的m种模式作为Y部的点: 每个任务就 ...

  3. POJ 3041 Asteroids (二分图最小点覆盖集)

    Asteroids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24789   Accepted: 13439 Descr ...

  4. poj 2226 Muddy Fields(最小点覆盖+巧妙构图)

      Description Rain has pummeled the cows' field, a rectangular grid of R rows and C columns (1 <= ...

  5. POJ 2226 Muddy Fields(最小点覆盖)题解

    题意:一片r*c的地,有些地方是泥地,需要铺地板.这些地板宽1,长无限,但只能铺在泥地上不能压到其他地方,问你铺满所有泥地最少几块 思路:我们把一行中连续的泥地看成整体,并把所有横的整体里的点编成一个 ...

  6. poj 2226 Muddy Fields(最小点覆盖)

    题意: M*N的矩阵,每个格不是*就是#.     *代表水坑,#代表草地. 农民要每次可以用一块宽为1,长不限的木板去铺这个矩阵.要求这块木板不能覆盖草地.木板可以重复覆盖(即一块木板与另一块木板有 ...

  7. POJ 2226 Muddy Fields (最小点覆盖集,对比POJ 3041)

    题意 给出的是N*M的矩阵,同样是有障碍的格子,要求每次只能消除一行或一列中连续的格子,最少消除多少次可以全部清除. 思路 相当于POJ 3041升级版,不同之处在于这次不能一列一行全部消掉,那些非障 ...

  8. 二分图变种之最小路径覆盖、最小点覆盖集【poj3041】【poj2060】

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=54859604 向大(hei)佬(e)势力学(di ...

  9. POJ 3041 Asteroids (最小点覆盖集)

    题意 给出一个N*N的矩阵,有些格子上有障碍,要求每次消除一行或者一列的障碍,最少消除多少次可以全部清除障碍. 思路 把关键点取出来:一个障碍至少需要被它的行或者列中的一个消除. 也许是最近在做二分图 ...

随机推荐

  1. Android ADB命令大全(通过ADB命令查看wifi密码、MAC地址、设备信息、操作文件、查看文件、日志信息、卸载、启动和安装APK等)

    ADB很强大,记住一些ADB命令有助于提高工作效率. 获取序列号: adb get-serialno 查看连接计算机的设备: adb devices 重启机器: adb reboot 重启到bootl ...

  2. The server does not support version 3.0 of the J2EE Web module specification

    1.错误: 在eclipse中使用run->run on server的时候,选择tomcat6会报错误:The server does not support version 3.0 of t ...

  3. Android判断网络是否连接

    <!-- 配置文件判断网络是否连接 --> <uses-permission android:name="android.permission.ACCESS_NETWORK ...

  4. yum 配置

    1.配置yum本地源 # mount /dev/cdrom /mnt/ # vim /etc/yum.repos.d/rhel-source.repo 1 [rhel-source] 2 name=R ...

  5. 用nginx做反向代理来访问防外链图片

    用nginx做反向代理来访问防外链图片 女儿的博客从新浪搬到wordpress后,发现原来博客上链接的新浪相册的图片都不能访问了,一年的博客内容,一个个去重新上传图片,修正链接也是个大工程.还是得先想 ...

  6. RPM软件包管理的查询功能

    以后大家升级rpm包的时候,不要用Uvh了! 我推荐用Fvh 前者会把没有安装过得包也给装上,后者只会更新已经安装的包   总结:未安装的加上小写p,已安装的不需要加p   查询q    rpm {- ...

  7. [转]sql语句中出现笛卡尔乘积 SQL查询入门篇

    本篇文章中,主要说明SQL中的各种连接以及使用范围,以及更进一步的解释关系代数法和关系演算法对在同一条查询的不同思路. 多表连接简介 在关系数据库中,一个查询往往会涉及多个表,因为很少有数据库只有一个 ...

  8. Spring面试题集

    一.Spring简介       *  Spring框架有哪几部分组成? Spring框架有七个模块组成组成,这7个模块(或组件)均可以单独存在,也可以与其它一个或多个模块联合使用,主要功能表现如下: ...

  9. SQL— CONCAT(字符串连接函数)

    有的时候,我们有需要将由不同栏位获得的资料串连在一起.每一种资料库都有提供方法来达到这个目的: MySQL: CONCAT() Oracle: CONCAT(), || SQL Server: + C ...

  10. 数据库ACID

    数据库的事务隔离级别 10.数据库的事务隔离级别一般分为4个级别,其中可能发生“不可重复读”的事物级别有()A.SERIALIZABLE B.READ COMMITTEDC.READ UNCOMMIT ...