import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import tensorflow.contrib.slim as slim # 因为slim.nets包在 tensorflow 1.3 中有一些问题,所以这里为了方便
# 我们将slim.nets.inception_v3中的代码拷贝到了同一个文件夹下。
# import inception_v3 # 加载通过TensorFlow-Slim定义好的inception_v3模型。
import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = 'E\\flower_processed_data\\flower_processed_data.npy'
# 保存训练好的模型的路径。这里我们可以将使用新数据训练得到的完整模型保存
# 下来,如果计算资源充足,我们还可以在训练完最后的全联接层之后再训练所有
# 网络层,这样可以使得新模型更加贴近新数据。
TRAIN_FILE = 'E\\train_dir\\model'
# 谷歌提供的训练好的模型文件地址。
CKPT_FILE = 'E:\\inception_v3\\inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.01
STEPS = 5000
BATCH = 128
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。这里就是最后的全联接层,因为在
# 新的问题中我们要重新训练这一层中的参数。这里给出的是参数的前缀。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits'
# 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
# 这里给出的是参数的前缀。
TRAINABLE_SCOPES='InceptionV3/Logits' # 获取所有需要从谷歌训练好的模型中加载的参数。
def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')] variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中
# 移除。
for var in slim.get_model_variables():
print var.op.name
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore # 获取所有需要训练的变量列表。
def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = []
# 枚举所有需要训练的参数前缀,并通过这些前缀找到所有的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1]
validation_images = processed_data[2]
validation_labels = processed_data[3]
testing_images = processed_data[4]
testing_labels = processed_data[5] # 定义inception-v3的输入,images为输入图片,labels为每一张图片
# 对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels') # 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。因为模型
# 中使用到了dropout,所以需要定一个训练时使用的模型,一个测试时
# 使用的模型。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
train_logits, _ = inception_v3.inception_v3(
images, num_classes=N_CLASSES, is_training=True)
# 定义测试使用的模型时需要将reuse设置为True。
test_logits, _ = inception_v3.inception_v3(
images, num_classes=N_CLASSES, is_training=False, reuse=True) trainable_variables = get_trainable_variables()
print(trainable_variables) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=train_logits, labels=tf.one_hot(labels, N_CLASSES))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean,var_list=trainable_variables) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(test_logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
loader = tf.train.Saver(get_tuned_variables())
saver = tf.train.Saver()
with tf.variable_scope("InceptionV3", reuse = True):
check1 = tf.get_variable("Conv2d_1a_3x3/weights")
check2 = tf.get_variable("Logits/Conv2d_1c_1x1/weights") with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init)
print sess.run(check1)
print sess.run(check2) # 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
loader.restore(sess, CKPT_FILE)
start = 0
end = BATCH
for i in range(STEPS):
print sess.run(check1)
print sess.run(check2)
_, loss = sess.run([train_step, cross_entropy_mean], feed_dict={images: training_images[start:end], labels: training_labels[start:end]})
if i % 100 == 0 or i + 1 == STEPS:
saver.save(sess, TRAIN_FILE, global_step=i)
validation_accuracy = sess.run(evaluation_step, feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Training loss is %.1f%% Validation accuracy = %.1f%%' % (i, loss * 100.0, validation_accuracy * 100.0))
start = end
if start == n_training_example:
start = 0
end = start + BATCH
if end > n_training_example:
end = n_training_example # 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={images: test_images, labels: test_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100)) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  2. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  3. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(1)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  4. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  6. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  7. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  8. 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集

    # 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...

  9. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. PHP SDK+Oss 上传文件流

    // Endpoint以杭州为例,其它Region请按实际情况填写. $endpoint = "http://oss-cn-hangzhou.aliyuncs.com"; // 云 ...

  2. Java代码如何关联Hadoop源码

    昨天在学习Hadoop的时候,遇到一个问题就是Java关联Hadoop源码的时候死活关联不上,但是我发现在公司的电脑就可以顺利关联到源码.考虑了一下觉得应该是Eclipse版本的问题,于是我下载了ec ...

  3. PTPX-功耗分析总结

    使用PrimeTime PX进行功耗分析有两种:一种是平均功耗的分析Averaged power analysis,一种是Time-based power analysis.   电路的功耗主要有两种 ...

  4. jquery实现点击显示,再点击隐藏

    //点击a标签,轮流显示和隐藏<div id="timo" style="background-color:red;height:50px;width:50px;& ...

  5. Bugku-CTF分析篇-这么多数据包(这么多数据包找找吧,先找到getshell的流)

    这么多数据包 这么多数据包找找吧,先找到getshell的流

  6. 1.0 Jmeter 安装运行

    1.百度搜索JDK进行下载JDK安装与环境变量配置http://jingyan.baidu.com/article/6dad5075d1dc40a123e36ea3.html ---- 在JDK安装完 ...

  7. c++调用自己编写的静态库(通过eclipse)

    转:https://blog.csdn.net/hao5335156/article/details/80282829 参考:https://blog.csdn.net/u012707739/arti ...

  8. 吴裕雄 python 机器学习——数据预处理标准化MinMaxScaler模型

    from sklearn.preprocessing import MinMaxScaler #数据预处理标准化MinMaxScaler模型 def test_MinMaxScaler(): X=[[ ...

  9. Atcoder Beginner Contest153F(模拟)

    应该也可以用线段树/树状数组区间更新怪兽的生命值来做 #define HAVE_STRUCT_TIMESPEC #include<bits/stdc++.h> using namespac ...

  10. kali Linux 2020.1最新安装教程,亲身尝试,绝对能帮你安装好!不是root、没有桌面、中文乱码、下载太慢、ssh链接等问题!

    既然已经开始研究kali Linux,小编就认为在下已经有了一定的基础.当然小编也是个小白用户.本人用的是Vmware虚拟机,这里只说一点,内存我选择的是4g因为这个包含桌面,所以稍微大一点.Linx ...