本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py

这篇文章主要介绍了 PyTorch 中的池化层、线性层和激活函数层。

池化层

池化的作用则体现在降采样:保留显著特征、降低特征维度,增大 kernel 的感受野。 另外一点值得注意:pooling 也可以提供一些旋转不变性。 池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避免过拟合的出现;一方面进行特征压缩,提取主要特征。

有最大池化和平均池化两张方式。

最大池化:nn.MaxPool2d()

nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

这个函数的功能是进行 2 维的最大池化,主要参数如下:

  • kernel_size:池化核尺寸
  • stride:步长,通常与 kernel_size 一致
  • padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
  • dilation:池化间隔大小,默认为 1。常用于图像分割任务中,主要是为了提升感受野
  • ceil_mode:默认为 False,尺寸向下取整。为 True 时,尺寸向上取整
  • return_indices:为 True 时,返回最大池化所使用的像素的索引,这些记录的索引通常在反最大池化时使用,把小的特征图反池化到大的特征图时,每一个像素放在哪个位置。

下图 (a) 表示反池化,(b) 表示上采样,(c) 表示反卷积。

下面是最大池化的代码:

import os
import torch
import torch.nn as nn
from torchvision import transforms
from matplotlib import pyplot as plt
from PIL import Image
from common_tools import transform_invert, set_seed set_seed(1) # 设置随机种子 # ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs/lena.png")
img = Image.open(path_img).convert('RGB') # 0~255 # convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
img_tensor.unsqueeze_(dim=0) # C*H*W to B*C*H*W # ================================= create convolution layer ================================== # ================ maxpool
flag = 1
# flag = 0
if flag:
maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2)) # input:(i, o, size) weights:(o, i , h, w)
img_pool = maxpool_layer(img_tensor) print("池化前尺寸:{}\n池化后尺寸:{}".format(img_tensor.shape, img_pool.shape))
img_pool = transform_invert(img_pool[0, 0:3, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_pool)
plt.subplot(121).imshow(img_raw)
plt.show()

结果和展示的图片如下:

池化前尺寸:torch.Size([1, 3, 512, 512])
池化后尺寸:torch.Size([1, 3, 256, 256])

nn.AvgPool2d()

torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)

这个函数的功能是进行 2 维的平均池化,主要参数如下:

  • kernel_size:池化核尺寸
  • stride:步长,通常与 kernel_size 一致
  • padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
  • dilation:池化间隔大小,默认为 1。常用于图像分割任务中,主要是为了提升感受野
  • ceil_mode:默认为 False,尺寸向下取整。为 True 时,尺寸向上取整
  • count_include_pad:在计算平均值时,是否把填充值考虑在内计算
  • divisor_override:除法因子。在计算平均值时,分子是像素值的总和,分母默认是像素值的个数。如果设置了 divisor_override,把分母改为 divisor_override。
img_tensor = torch.ones((1, 1, 4, 4))
avgpool_layer = nn.AvgPool2d((2, 2), stride=(2, 2))
img_pool = avgpool_layer(img_tensor)
print("raw_img:\n{}\npooling_img:\n{}".format(img_tensor, img_pool))

输出如下:

raw_img:
tensor([[[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]])
pooling_img:
tensor([[[[1., 1.],
[1., 1.]]]])

加上divisor_override=3后,输出如下:

raw_img:
tensor([[[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]])
pooling_img:
tensor([[[[1.3333, 1.3333],
[1.3333, 1.3333]]]])

nn.MaxUnpool2d()

nn.MaxUnpool2d(kernel_size, stride=None, padding=0)

功能是对二维信号(图像)进行最大值反池化,主要参数如下:

  • kernel_size:池化核尺寸
  • stride:步长,通常与 kernel_size 一致
  • padding:填充宽度

代码如下:

# pooling
img_tensor = torch.randint(high=5, size=(1, 1, 4, 4), dtype=torch.float)
maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2), return_indices=True)
img_pool, indices = maxpool_layer(img_tensor) # unpooling
img_reconstruct = torch.randn_like(img_pool, dtype=torch.float)
maxunpool_layer = nn.MaxUnpool2d((2, 2), stride=(2, 2))
img_unpool = maxunpool_layer(img_reconstruct, indices) print("raw_img:\n{}\nimg_pool:\n{}".format(img_tensor, img_pool))
print("img_reconstruct:\n{}\nimg_unpool:\n{}".format(img_reconstruct, img_unpool))

输出如下:

# pooling
img_tensor = torch.randint(high=5, size=(1, 1, 4, 4), dtype=torch.float)
maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2), return_indices=True)
img_pool, indices = maxpool_layer(img_tensor) # unpooling
img_reconstruct = torch.randn_like(img_pool, dtype=torch.float)
maxunpool_layer = nn.MaxUnpool2d((2, 2), stride=(2, 2))
img_unpool = maxunpool_layer(img_reconstruct, indices) print("raw_img:\n{}\nimg_pool:\n{}".format(img_tensor, img_pool))
print("img_reconstruct:\n{}\nimg_unpool:\n{}".format(img_reconstruct, img_unpool))

线性层

线性层又称为全连接层,其每个神经元与上一个层所有神经元相连,实现对前一层的线性组合或线性变换。

代码如下:

inputs = torch.tensor([[1., 2, 3]])
linear_layer = nn.Linear(3, 4)
linear_layer.weight.data = torch.tensor([[1., 1., 1.],
[2., 2., 2.],
[3., 3., 3.],
[4., 4., 4.]]) linear_layer.bias.data.fill_(0.5)
output = linear_layer(inputs)
print(inputs, inputs.shape)
print(linear_layer.weight.data, linear_layer.weight.data.shape)
print(output, output.shape)

输出为:

tensor([[1., 2., 3.]]) torch.Size([1, 3])
tensor([[1., 1., 1.],
[2., 2., 2.],
[3., 3., 3.],
[4., 4., 4.]]) torch.Size([4, 3])
tensor([[ 6.5000, 12.5000, 18.5000, 24.5000]], grad_fn=<AddmmBackward>) torch.Size([1, 4])

激活函数层

假设第一个隐藏层为:$H_{1}=X \times W_{1}$,第二个隐藏层为:$H_{2}=H_{1} \times W_{2}$,输出层为:

$$ \begin{aligned} \text { Out } \boldsymbol{p} \boldsymbol{u} \boldsymbol{t} &=\boldsymbol{H}{2} * \boldsymbol{W}{3} \ &=\boldsymbol{H}{1} * \boldsymbol{W}{2} * \boldsymbol{W}{3} \ &=\boldsymbol{X} * (\boldsymbol{W}{1} *\boldsymbol{W}{2} * \boldsymbol{W}{3}) \ &=\boldsymbol{X} * {W} \end{aligned} $$

如果没有非线性变换,由于矩阵乘法的结合性,多个线性层的组合等价于一个线性层。

激活函数对特征进行非线性变换,赋予了多层神经网络具有深度的意义。下面介绍一些激活函数层。

nn.Sigmoid

  • 计算公式:$y=\frac{1}{1+e^{-x}}$
  • 梯度公式:$y^{\prime}=y *(1-y)$
  • 特性:
    • 输出值在(0,1),符合概率
    • 导数范围是 [0, 0.25],容易导致梯度消失
    • 输出为非 0 均值,破坏数据分布

nn.tanh

  • 计算公式:$y=\frac{\sin x}{\cos x}=\frac{e{x}-e{-x}}{e{-}+e{-x}}=\frac{2}{1+e^{-2 x}}+1$
  • 梯度公式:$y{\prime}=1-y{2}$
  • 特性:
    • 输出值在(-1, 1),数据符合 0 均值
    • 导数范围是 (0,1),容易导致梯度消失

nn.ReLU(修正线性单元)

  • 计算公式:$y=max(0, x)$
  • 梯度公式:$y^{\prime}=\left{\begin{array}{ll}1, & x>0 \ u n d \text { ef ined, } & x=0 \ 0, & x<0\end{array}\right.$
  • 特性:
    • 输出值均为正数,负半轴的导数为 0,容易导致死神经元
    • 导数是 1,缓解梯度消失,但容易引发梯度爆炸

针对 RuLU 会导致死神经元的缺点,出现了下面 3 种改进的激活函数。

nn.LeakyReLU

  • 有一个参数negative_slope:设置负半轴斜率

nn.PReLU

  • 有一个参数init:设置初始斜率,这个斜率是可学习的

nn.RReLU

R 是 random 的意思,负半轴每次斜率都是随机取 [lower, upper] 之间的一个数

  • lower:均匀分布下限
  • upper:均匀分布上限

参考资料

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

[PyTorch 学习笔记] 3.3 池化层、线性层和激活函数层的更多相关文章

  1. JUC源码学习笔记5——线程池,FutureTask,Executor框架源码解析

    JUC源码学习笔记5--线程池,FutureTask,Executor框架源码解析 源码基于JDK8 参考了美团技术博客 https://tech.meituan.com/2020/04/02/jav ...

  2. UFLDL深度学习笔记 (五)自编码线性解码器

    UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...

  3. 【小白学PyTorch】21 Keras的API详解(下)池化、Normalization层

    文章来自微信公众号:[机器学习炼丹术].作者WX:cyx645016617. 参考目录: 目录 1 池化层 1.1 最大池化层 1.2 平均池化层 1.3 全局最大池化层 1.4 全局平均池化层 2 ...

  4. Pytorch学习笔记(二)---- 神经网络搭建

    记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...

  5. 【pytorch】pytorch学习笔记(一)

    原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...

  6. Pytorch学习笔记(一)——简介

    一.Tensor Tensor是Pytorch中重要的数据结构,可以认为是一个高维数组.Tensor可以是一个标量.一维数组(向量).二维数组(矩阵)或者高维数组等.Tensor和numpy的ndar ...

  7. [PyTorch 学习笔记] 3.1 模型创建步骤与 nn.Module

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 ...

  8. 陈云pytorch学习笔记_用50行代码搭建ResNet

    import torch as t import torch.nn as nn import torch.nn.functional as F from torchvision import mode ...

  9. 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )

    CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...

随机推荐

  1. luogu P5043 【模板】树同构 hash 最小表示法

    LINK:模板 树同构 题目说的很迷 给了一棵有根树 但是重新标号 言外之意还是一棵无根树 然后要求判断是否重构. 由于时无根的 所以一个比较显然的想法暴力枚举根. 然后做树hash或者树的最小表示法 ...

  2. bzoj 4278 [ONTAK2015]Tasowanie

    给出两个字符串 A B 让我们对其二路归并 求出能够归并出的最小字典序. 考虑后缀数组 不难发现我们将B直接连在A上会出现问题 问题是 A串剩下的和B串完全相同了 那么此时比大小就会用到B的部分 这是 ...

  3. bzoj 4238 电压

    LINK:电压 一张图 每个点可以为黑点或百点 每一条边的两端都必须为一黑一白.询问又多少条边满足除了这条边不满足条件其余所有边都满足条件. 分析一下这个所谓的条件 每一条边的两端必须为一黑一白 所以 ...

  4. bzoj 5206 [Jsoi2017]原力

    LINK:原力 一张无向图 这道题统计三元环的价值和.有重边但是无自环. 我曾经写过三元环计数 这个和那个题差不太多. 不过有很多额外操作 对于重边问题 我们把所有颜色相同的重边缩在一起 这样的话我们 ...

  5. 利用Jsoup爬取新冠疫情数据并存至数据库

    需要用到的jar包(用来爬取的jsoup,htmlunit-2.37.0-bin以及连接数据库中的mysql.jar) 链接:https://pan.baidu.com/s/1VlylWmlhjd8K ...

  6. 小谢第50问:vuex的五个属性-使用-介绍

    一.Vuex 是什么? 官网:Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 关键词:状态 ...

  7. 20行代码教你用python给证件照换底色

    1.图片来源 该图片来源于百度图片,如果侵权,请联系我删除!图片仅用于知识交流.本文只是为了告诉大家:python其实有很多黑科技(牛逼的库),我们既可以用python处理工作中的一些事儿,同时我们也 ...

  8. MATLAB通过ODBC连接数据库方法

    MATLAB通过ODBC连接数据库方法 1.首先创建数据库,我在这里用到的是MySQL 8.0 2.建立ODBC数据源,参考链接: https://www.cnblogs.com/benpao1314 ...

  9. 【Mysql】SpringBoot阿里Druid数据源连接池配置

    一.pom.xml添加 <!-- 配置数据库连接池 --> <dependency> <groupId>com.alibaba</groupId> &l ...

  10. 浅谈:C#中的非泛型集合

    1.首先:ArrayList:非泛型集合 List:泛型集合 集合跟数组比较我们更容易理解.数组:1,长度固定2,数据类型预先声明 集合:1,长度可变2,数据类型预先声明的为泛型集合,数据类型不限定为 ...