使用pandas处理数据和matplotlib生成可视化图表
一、缘由
上一篇输入关键词“口红”,将淘宝中的的相关商品信息全部爬取了下拉,并且以CSV的文件格式储存。我们拿到数据之后,那么就需要对数据进行处理。只是将爬取到的数据以更直观的方式——图表呈现出来。并且最后使用jieba、wordcloud来对商品名称进行词云的分析。
二、代码实现
话不多说,直接上代码:
#数据分析
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import re
import jieba
from wordcloud import WordCloud,STOPWORDS
from PIL import Image
import datetime def data_analysis(goods):
###数据处理
#读取数据
df=pd.read_csv(r'C:/Users/sunshine/Desktop/课件/图片/爬取的数据/' + '淘宝' + goods+'.csv')
#降序排列
df1=df.sort_values('sum_body',ignore_index=True)
#删除重复值
df2=df1.drop_duplicates()
#重置索引
df2.index = range(len(df2))
#用平均值替换缺失值
df3=df2.fillna(df2.mean())
#用上下四分位数处理异常数据
#确定正常数据的范围 上四分位数加上1.5倍分位差 下四分位数减1.5倍分位差 分位差是上四分位数减下四分位数 mean1=df3['sum_body'].quantile(q=0.25)
mean2=df3['sum_body'].quantile(q=0.75)
mean3=mean2-mean1
topnum=mean2+1.5*mean3
lownum=mean1-1.5*mean3 #判断是否需要处理异常值
#范围
#print((lownum['prices'],topnum['prices']))
# print((lownum,topnum)) #判断价格是否在范围之内 结果为存在超出正常范围的价格
# print('判断是否存在超出正常范围的价格:',any(df3['prices']>topnum['prices']))
# print('判断是否存在低于正常范围的价格:',any(df3['prices']<lownum['prices'])) #判断购买人数是否在正常范围 结果为存在超出正常范围的价格
# print('判断是否存在超出正常范围的购买人数:',any(df3['sum_body']>topnum))
# print('判断是否存在超出正常范围的购买人数:',any(df3['sum_body']<lownum)) # plt.boxplot(x=df3['sum_body'])
# plt.show()
# df3['prices'][df3['prices']<topnum] #价格替换
replace_value_prices=df3['prices'][df3['prices']<topnum].max()
df3.loc[df3['prices']>topnum,'prices']=replace_value_prices #购买人数替换
replace_value_sum_body=df3['sum_body'][df3['sum_body']<topnum].max()
df3.loc[df3['sum_body']>topnum,'sum_body']=replace_value_sum_body
# plt.boxplot(x=df3['sum_body'])
# plt.show() # 进行聚合分析
# 生成数据透视表 # 1、地域和价格
df3.groupby('loc')['prices'].mean() # 2、地区和店铺数量
df3['loc'].value_counts()
# 3、价格和销售额
# 4、店铺和销售额
# 5、价格和购买人数
df4=df3.groupby('shop_name').agg({'prices':np.mean,'sum_body':np.mean})
df4['sum_sales']=df4['prices']*df4['sum_body']
df5=pd.merge(df3,df4,how='left').fillna(method='ffill')
# print(df5)
# 6、地区和销量
df6=df5.groupby(['shop_name', 'loc']).agg({'prices': np.mean, 'sum_body': np.mean})
df7=df6.reset_index()
df8=df7.groupby('loc').sum().reset_index() '''
使用matplotlib画出饼状图、直方图频率分布图、散点图、柱状图、
'''
time=str(datetime.datetime.now().date()) #1、地区和销量的柱状图
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.figure(figsize=(20,9))
x_data=df8['loc']
y_data=df8['sum_body']
plt.bar(x_data,y_data,color='b',width=1)
plt.xlabel('地区',fontsize=15)
plt.ylabel('销量',fontsize=15)
plt.title('不同地区的销量',fontdict={'fontsize':20})
plt.savefig(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\数据分析\i'+time+'地区和销量柱状图.png')
plt.show()
plt.close()
#2、地区和店铺数量的直方图
plt.figure(figsize=(20,9))
df9=df3['loc'].value_counts().reset_index()
x_data=df9['index']
y_data=df9['loc']
plt.bar(range(0,len(x_data)),y_data,tick_label=x_data)
plt.xlabel('地区',fontsize=15)
plt.ylabel('店铺数量',fontsize=15)
plt.title('地区和店铺数量的关系',fontdict={'fontsize':20})
plt.savefig(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\数据分析\i'+time+'地区和店铺数量直方图.png')
plt.show()
plt.close()
#3、价格和销售量的散点图
plt.figure()
x_data=df4['prices']
y_data=df4['sum_body']
plt.scatter(x_data,y_data,color='pink')
plt.xlabel('价格')
plt.ylabel('销量')
plt.title('价格和销量之间的关系')
plt.grid()
plt.savefig(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\数据分析\i'+time+'价格和销量散点图.png')
plt.show()
plt.close()
#4、价格和销售额的散点图
#价格和销售额之间的散点图
plt.figure()
np.set_printoptions(suppress=True, precision=10, threshold=2000, linewidth=150)
pd.set_option('display.float_format',lambda x : '%.2f' % x)
x_data=df4['prices']
y_data=df4['sum_sales']
plt.scatter(x_data,y_data,color='purple')
def formatnum(x,pos):
return float(x)
formatter = FuncFormatter(formatnum)
# 设置坐标轴格式
plt.gca().yaxis.set_major_formatter(formatter)
plt.yticks()
plt.xlabel('价格')
plt.ylabel('销量')
plt.title('价格和销量额之间的关系')
plt.grid()
plt.savefig(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\数据分析\i'+time+'价格和销量额散点图.png')
plt.show()
plt.close() #5、地区和店铺数量分布的饼状图
plt.figure(figsize=(10,8),dpi=150)
x_data=df9['index']
y_data=df9['loc']
plt.pie(y_data,labels=x_data,radius=1.2,autopct='%1.1f%%',pctdistance=0.6,textprops={'fontsize':10})
plt.title('店铺地区分布',fontdict={'fontsize':10},y=1.0)
plt.legend(loc=(1.1,0.1),fontsize=10)
plt.savefig(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\数据分析\i'+time+'地区和店铺数量分布饼状图.png')
plt.show()
plt.close() #6、价格的频数分布直方图
plt.figure()
data=df3['prices']
plt.hist(data,bins=50,color='g')
plt.xlabel('价格')
plt.ylabel('频数')
plt.title('价格的频数分布直方图')
plt.grid()
plt.savefig(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\数据分析\i'+time+'价格的频数分布直方图.png')
plt.show()
plt.close()
#7、关于店铺名称的词云
plt.figure(figsize=(8,8),dpi=100)
jieba.setLogLevel(jieba.logging.INFO)
#建立停用词
stop_words=set(STOPWORDS) with open(r"C:\Users\sunshine\Desktop\课件\图片\爬取的数据\stop_words.txt",'r',encoding='utf-8') as f:
stop_words.add(f.read())
#统计文件的读取成为字符串
data=df3['shop_name'].values
data="".join(data) #对统计文本进行分词处理
cut_list=jieba.lcut(data)
#对每一个分词进行处理
def fiter_word(words,stop_words):
num=re.search('\d+',words)
if num==None:
if words not in stop_words:
if len(words)>1:
return words
else:
pass
else:
pass
#对文本进行次数的统计
word_freq=dict()
for one in cut_list:
# print(list(one))
row=fiter_word(one,STOPWORDS)
if row:
word_freq[row]=word_freq.get(row,0)+1
# print(word_freq)
#使用图片背景
mask=np.array(Image.open(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\背景.png'))
wc=WordCloud(font_path=r'C:\Windows\Fonts\simkai.ttf',background_color='white',
mask=mask,max_font_size=100,max_words=500,random_state=1,
scale=3,stopwords=stop_words)
wc.generate_from_frequencies(word_freq)
plt.imshow(wc,interpolation='bilinear')
plt.axis('off')
plt.savefig(r'C:\Users\sunshine\Desktop\课件\图片\爬取的数据\数据分析\i'+time+'店铺名称词云.png')
plt.show()
plt.close()
if __name__ == '__main__':
data_analysis(goods)
三、运行结果
1、地区和销量的柱状图

2、地区和店铺数量的直方图

3、价格和销售量的散点图

4、价格和销售额的散点图

5、地区和店铺数量分布的饼状图

6、价格的频数分布直方图

7、关于店铺名称的词云

四、小结
当然这次是基于matplotlib实现的制作图表。但是却没有交互的功能。如果可以使用pygal库来进行的话,可以实现交互的功能,会更方便前端的展示。
使用pandas处理数据和matplotlib生成可视化图表的更多相关文章
- Python数据分析:手把手教你用Pandas生成可视化图表
大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事.但自从Python进入3.0时代以后, ...
- ELK之使用metricbeat收集系统数据及其他程序并生成可视化图表
将 Metricbeat 部署到您所有的 Linux.Windows 和 Mac 主机,并将它连接到 Elasticsearch 就大功告成啦:您可以获取系统级的 CPU 使用率.内存.文件系统.磁盘 ...
- ELK之使用filebeat收集系统数据及其他程序并生成可视化图表
当您要面对成百上千.甚至成千上万的服务器.虚拟机和容器生成的日志时,请告别 SSH 吧.Filebeat 将为您提供一种轻量型方法,用于转发和汇总日志与文件,让简单的事情不再繁杂. 1,安装fileb ...
- 使用可视化图表对 Webpack 2 的编译与打包进行统计分析
此文主要对使用可视化图表对 Webpack 2 的编译与打包进行统计分析进行了详细地讲解,供您更加直观地参考. 在之前更新的共十七章节中,我们陆续讲解了 Webpack 2 从配置到打包.压缩优化到调 ...
- JFreeChart与AJAX+JSON+ECharts两种处理方式生成热词统计可视化图表
本篇的思想:对HDFS获取的数据进行两种不同的可视化图表处理方式.第一种JFreeChar可视化处理生成图片文件查看.第二种AJAX+JSON+ECharts实现可视化图表,并呈现于浏览器上. 对 ...
- 动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题
动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3 ...
- python requests抓取NBA球员数据,pandas进行数据分析,echarts进行可视化 (前言)
python requests抓取NBA球员数据,pandas进行数据分析,echarts进行可视化 (前言) 感觉要总结总结了,希望这次能写个系列文章分享分享心得,和大神们交流交流,提升提升. 因为 ...
- Python数据可视化之Matplotlib实现各种图表
数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和 ...
- Python调用matplotlib实现交互式数据可视化图表案例
交互式的数据可视化图表是 New IT 新技术的一个应用方向,在过去,用户要在网页上查看数据,基本的实现方式就是在页面上显示一个表格出来,的而且确,用表格的方式来展示数据,显示的数据量会比较大,但是, ...
- Pandas系列(十二)-可视化详解
目录 1. 折线图 2. 柱状图 3. 直方图 4. 箱线图 5. 区域图 6. 散点图 7. 饼图六边形容器图 数据分析的结果不仅仅只是你来看的,更多的时候是给需求方或者老板来看的,为了更直观地看出 ...
随机推荐
- 安装 CRI 客户端 crictl
# https://github.com/kubernetes-sigs/cri-tools/releases/ 选择版本 wget https://github.com/kubernetes-sig ...
- 关于MongoDB副本集和分片集群有关用户和权限的说明分析
1.MongoDB副本集 可以先创建超管用户,然后再关闭服务,创建密钥文件,修改配置文件,启动服务,使用超管用户登录验证,然后创建普通用户 2.MongoDB分片集群 先关闭服务,创建密钥文件,修改配 ...
- Node.js(六)连接MongoDB进行数据访问
npm init -y(初始化项目) npm install mongodb --save(引入MongoDB) const { MongoClient } = require("mongo ...
- UVA12186 工人的请愿书 Another Crisis (树形DP)
dp[i]表示要让i向上级发请愿书,最少需要多少个工人递交请愿书,因为要取前T%最小的,所以还要将i的子节点排序(这里用vector实现),取前c个最小的作为dp[i]的值. 这里用dfs可以省去dp ...
- MySQL基础、MySQL安装和MariaDB安装
MySQL基础 目录 MySQL基础 关系型数据库介绍 数据结构模型 RDBMS专业名词 关系型数据库的常见组件 SQL语句 MySQL安装与配置 MySQL安装 MariaDB安装 关系型数据库介绍 ...
- 齐博x1一段不错的小js提高一点点阅读体验 计算本文阅读所需的时长
如图所示很多比较大的站点都有这样的一个小玩意 就是本文有多少字 阅读需要多少时间. 一段小小的js就可以实现,当然了php也可以功能太小了不值得做钩子或者插件自己需要的话再模板加一下吧. <sc ...
- Java函数式编程:一、函数式接口,lambda表达式和方法引用
Java函数式编程 什么是函数式编程 通过整合现有代码来产生新的功能,而不是从零开始编写所有内容,由此我们会得到更加可靠的代码,并获得更高的效率 我们可以这样理解:面向对象编程抽象数据,函数式编程抽象 ...
- vue3中$attrs的变化与inheritAttrs的使用
在vue3中的$attrs的变化 $listeners已被删除合并到$attrs中. $attrs现在包括class和style属性. 也就是说在vue3中$listeners不存在了.vue2中$l ...
- MRR和Hits@n
使用 MRR/Hits@n 评估链路预测 平均倒数秩(Mean reciprocal rank,MRR) MRR是一种衡量搜索质量的方法.我们取一个未被破坏的节点,找到距离定义为相似性分数的" ...
- pod(五):pod hook(pod钩子)和优雅的关闭nginx pod
目录 一.系统环境 二.前言 三.pod hook(pod钩子) 四.如何优雅的关闭nginx pod 一.系统环境 服务器版本 docker软件版本 Kubernetes(k8s)集群版本 CPU架 ...