在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

输入:n*c*h*w

输出:n*c*h*w

常用的激活函数有sigmoid, tanh,relu等,下面分别介绍。

1、Sigmoid

对每个输入数据,利用sigmoid函数执行操作。这种层设置比较简单,没有额外的参数。

层类型:Sigmoid

示例:

layer {
name: "encode1neuron"
bottom: "encode1"
top: "encode1neuron"
type: "Sigmoid"
}

2、ReLU / Rectified-Linear and Leaky-ReLU

ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。

标准的ReLU函数为max(x, 0),当x>0时,输出x; 当x<=0时,输出0

f(x)=max(x,0)

层类型:ReLU

可选参数:

  negative_slope:默认为0. 对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数时,就不再设置为0,而是用原始数据乘以negative_slope

 layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}

RELU层支持in-place计算,这意味着bottom的输出和输入相同以避免内存的消耗。

3、TanH / Hyperbolic Tangent

利用双曲正切函数对数据进行变换。

层类型:TanH

 layer {
name: "layer"
bottom: "in"
top: "out"
type: "TanH"
}

4、Absolute Value

求每个输入数据的绝对值。

f(x)=Abs(x)

层类型:AbsVal

 layer {
name: "layer"
bottom: "in"
top: "out"
type: "AbsVal"
}

5、Power

对每个输入数据进行幂运算

f(x)= (shift + scale * x) ^ power

层类型:Power

可选参数:

  power: 默认为1

  scale: 默认为1

  shift: 默认为0

 layer {
name: "layer"
bottom: "in"
top: "out"
type: "Power"
power_param {
power: 2
scale: 1
shift: 0
}
}

6、BNLL

binomial normal log likelihood的简称

f(x)=log(1 + exp(x))

层类型:BNLL

 layer {
name: "layer"
bottom: "in"
top: "out"
type: “BNLL”
}

caffe(4) 激活层(Activation Layers)及参数的更多相关文章

  1. [转] caffe视觉层Vision Layers 及参数

    视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经 ...

  2. Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  3. 转 Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  4. 3、激活层(Activiation Layers)及参数

    caffe激活层(Activiation Layers) 在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入 ...

  5. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  6. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  7. 【转】Caffe初试(六)激活层及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  8. [转] caffe激活层及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  9. 4、Caffe其它常用层及参数

    借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accu ...

随机推荐

  1. vue中响应式props办法

    title: vue中响应式props办法 toc: false date: 2018-12-25 21:22:49 categories: Web tags: Vue 更新props数据时,使用th ...

  2. node.js连接数据库基本操作、封装数据库操作,输出到网页

    声明:以下代码测试通过,不同于直接的复制粘贴乱七八糟未测试的代码,完全可以用,最后会附上所有的代码和sql文件 首先建立表,建表语句如下: /* SQLyog Ultimate v12.08 (64 ...

  3. 「JavaSE 重新出发」02. 数据类型与运算符

    「TOC」 Java 程序基本要求 Java 数据类型 基本数据类型 复合数据类型 运算符 逻辑运算符 位运算符 运算符优先级 Java 程序基本要求 public class : 一个 Java 文 ...

  4. 小型ceph集群的搭建

    了解ceph DFS(distributed file system)分布式存储系统,指文件系统管理的物理存储资源,不一定直接连接在本地节点上,而是通过计算机网络与节点相连,众多类别中,ceph是当下 ...

  5. BZOJ2161: 布娃娃 整体二分

    Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...

  6. hibernate N+1

    http://www.cnblogs.com/sy270321/p/4769198.html

  7. Linux快速入门打开你的学习之道

    Linux快速入门打开你的学习之道 相信看到这篇文章的你一定是想要学习Linux,或者已经在学习Linux的人了,那我们就可以一起探讨一下,学习Linux如何快速入门呢? 首先,希望大家弄清楚自己为什 ...

  8. 在android中,编译的项目使用到第三方jar的导入方法 终极版!

    1,在android系统环境中编译自己的项目时,往往会用到第三方jar包.这些jar包在eclipse中加入编译,一路畅通,由于eclipse已经帮助你配置好了.可是当把这个项目复制到系统环境中编译时 ...

  9. android-async-http二次封装和调用

    Android  android-async-http二次封装和调用 在开发过程中,网络请求这块的使我们常常遇到的一个问题,今天去github 站点上面学习android-async-http,认为还 ...

  10. Android图片旋转,缩放,位移,倾斜,对称完整演示样例(一)——imageView.setImageMatrix(matrix)和Matrix

    MainActivity例如以下: import android.os.Bundle; import android.view.MotionEvent; import android.view.Vie ...