hdu 5750 Dertouzos 素数
Dertouzos
Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1861 Accepted Submission(s): 584
Peter has two positive integers n and d. He would like to know the number of integers below n whose maximum positive proper divisor is d.
The first line contains two integers n and d (2≤n,d≤109).
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9
100 13
2
1
0
0
0
0
0
4
/*
hdu 5750 Dertouzos 素数 problem:
求n里面最大约数(不包含自身)为d的个数 solve:
如果是最大约数,那么另一个数必定数质数. 所以就是求最大的质数x,满足 x*d<n
但是有可能d的最小质数比x小: 4000 1000 ---> x = 3. 但实际上当x = 3时, 3*1000 = 3000 = 2*1500
所以还要求d的最小质数,最较小的即可. hhh-2016-08-29 16:46:41
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfl(a) scanf("%I64d",&a)
#define key_val ch[ch[root][1]][0]
#define inf 1e9
using namespace std;
const ll mod = 1e9+7;
const int maxn = 1000005; int prime[maxn+100];
void get_prime()
{
clr(prime,0);
for(int i =2; i <= maxn; i++)
{
if(!prime[i]) prime[++prime[0]] = i;
for(int j = 1; j <= prime[0] && prime[j] <= maxn/i; j++)
{
prime[prime[j]*i] = 1;
if(i%prime[j] == 0) break;
}
}
} int main()
{
int T,n,d;
int ans,tans;
get_prime();
scanfi(T);
while(T--)
{
scanfi(n),scanfi(d);
int limit = min(d,n/d); tans = ans = 0;
if(prime[1] * d >= n)
{
printf("0\n");
continue;
}
for(int i = 1; i <= prime[0]; i++)
{
if(d % prime[i] == 0)
{
ans = i;
break;
}
else
{
if(prime[i]*d < n && prime[i+1]*d >= n)
{
ans = i;
break;
}
}
}
printf("%d\n",ans);
}
return 0;
}
hdu 5750 Dertouzos 素数的更多相关文章
- HDU 5750 Dertouzos
Dertouzos Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- BestCoder HDU 5750 Dertouzos
Dertouzos 题意: 有中文,不说. 题解: 我看了别人的题解,还有个地方没懂, 为什么是 if(d%prime[i]==0) break; ? 代码: #include <bits/st ...
- HDU 5750 Dertouzos 简单数学
感悟:这又是zimpha巨出的一场题,然后04成功fst(也就是这题) 实际上还是too young,要努力增加姿势, 分析:直接枚举这些数不好枚举,换一个角度,枚举x*d,也就是d的另一个乘数是多少 ...
- 题解报告:hdu 5750 Dertouzos(最大真约数、最小素因子)
Problem Description A positive proper divisor is a positive divisor of a number n, excluding n itsel ...
- HDU 4548 美素数(打表)
HDU 4548 美素数(打表)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88159#problem/H 题目 ...
- 【HDU 5750】Dertouzos(数学)
题目给定n和d,都是10的9次方以内,求1到n里面有几个数最大因数是d?1000000组数据.解:求出d的满足p[i]*d<n的最小质因数是第几个质数.即为答案. #include<cst ...
- HDU 4548 美素数 在线打表加数状数组
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4548 解题报告:一开始本想先打个素数表,然后每次输入L 跟R 的时候都进行暴力判断,但这题测试数据太多 ...
- ZOJ 2562 HDU 4228 反素数
反素数: 对于不论什么正整数x,起约数的个数记做g(x).比如g(1)=1,g(6)=4. 假设某个正整数x满足:对于随意i(0<i<x),都有g(i)<g(x),则称x为反素数. ...
- hud 5750 Dertouzos
Dertouzos Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
随机推荐
- 关于python词典(Dictionary)的get()用法
先贴出参考链接:http://www.runoob.com/python/att-dictionary-get.html get()方法语法: dict.get(key, default=None) ...
- 每日冲刺报告--Day2
敏捷冲刺每日报告--Day2 情况简介 今天我们三个人在一起开了会,分析了我们面临的情况以及下一阶段的计划.一个重大的改进是,我们准备把之前用txt文件格式存储订阅列表改成了文件json格式. 任务进 ...
- 从源码角度看LinkedList一些基本操作(jdk1.7)
介绍 LinkedList是一个双向链表,就像下图展示那样,每个节点有个指向上个元素和一个指向下个元素的指针. 接下来我会对我们经常使用的方法进行介绍,代码如下 @Test public void t ...
- EVA 4400存储硬盘故障数据恢复方案和数据恢复过程
EVA系列存储是一款以虚拟化存储为实现目的的HP中高端存储设备,平时数据会不断的迁移,加上任务通常较为繁重,所以磁盘的负载相对是较重的,也是很容易出现故障的.EVA是依靠大量磁盘的冗余空间,以及故障后 ...
- 为微软samples-for-ai贡献代码是种怎么样的体验?
推送原文链接:传送门 关注SomedayWill,了解为微软项目贡献代码的始终. 还记得微软神器samples-for-ai吗?它可不仅仅可以用来安装框架,它其实是个开源的AI样例库,以Visual ...
- 《javascript设计模式与开发实践》阅读笔记(16)—— 状态模式
状态模式 会区分事物内部的状态,事物内部状态的改变往往会带来事物的行为改变.比如电灯的开关是开还是关,在外界的表现就完全不同. 电灯例子 按照常规思路,实现一个电灯就是构造一个电灯类,然后指定一下它的 ...
- 18-TypeScript模板方法模式
在有些情况下,一个功能在基础功能上是不会变的,算法的基本骨架也是确定的,但是在某些场景下算法的具体实现有些差异.应对这种问题,可以采用模板方法模式: abstract class Salary{ ab ...
- Python之旅_计算机基础入门
一.计算机基础 1.Python是编程语言 语言:一种事物与另一种事物沟通的介质. 编程语言:程序员与计算机沟通的介质. 什么是编程:程序员用编程语言把自己的逻辑思想下来,编程的结果就是一堆文件. 为 ...
- Linux命令及lamp搭建
单纯属于Linux的命令:1.强制卸载有依赖关系的软件包: rpm -e httpd-2.2.15-26.el6.x86_64 --nodeps(--nodeps表示无依赖)4.删除当前目录所有的文件 ...
- 使用 Vue 和 epub.js 制作电子书阅读器
ePub 简介 ePub 是一种电子书的标准格式,平时我看的电子书大部分是这种格式.在手机上我一般用"多看"阅读 ePub 电子书,在 Windows 上找不到用起来比较顺心的软件 ...