开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了。

Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras

Abstract

Optimization objectives:

  1. intrinsic/extrinsic parameters of all keyframes
  2. all selected pixels' depth

Integrate constraints from static stereo (左右两个相机的立体视觉约束是静态的) into the bundle adjustment pipeline of temporal multi-view stereo.
Fixed-baseline stereo resolves scale drift.

? It also reduces the sensitivities to large optical flow and to rolling shutter effect which are known shortcomings of direct image alignment methods.

1. Introduction

stem from: working in an effective way
heuristically: 启发式的
hallucinate: 出现幻觉
strip down: reduced to its simplest form

Strasdat et al. proposed to expand the concept of keyframes to integrate scale and proposed a double window optimization (Figure out what is it)

Direct methods aim at computing geometry and motion directly from the images thereby skipping the intermediate keypoint selection step.

The key idea of LSD SLAM is to incrementally track the camera and simultaneously perform a pose graph optimization in order to keep the entire camera trajectory globally consistent. 作者认为这种方式没有减少累计误差,只是把它扩散到整个轨迹中( So the meaning of pose graph is? )。

Three drawbacks of DSO:

  1. The mentioned performance was gained on a photometrically calibrated dataset, in its absense, the performance would degrade.
  2. Scale drift
  3. DSO is quite sensitive to geometric distortion as those induces by fast motion and rolling shutter. While techniques for calibrating rolling shutter exist for direct SLAM algorithm, these are often quite involved and far from real-time capable.

Contribution:

  1. A stereo version of DSO. detail the proposed combination of temporal multi-view stereo and static stereo.
  2. Stereo DSO is good.

2. Direct Sparse VO with Stereo Camera

  • Absolute scale can be directly calculated from static stereo from the known baseline of the stereo camera
  • Static stereo can provide initial depth estimation for multi-view stereo
  • Static Stereo can only accurately triangulate 3D points within a limited depth range while this limit is resolved by temporal multi-view stereo.

New stereo frames are first tracked with respect to their reference keyframe in a coarse-to-fine mannar.

A joint optimization of their poses, affine brightness (两个参数:a和b) parameters, as well as the depts of all the observed 3D points and camera intrinsics, is performed.

2.1 Notation

Nothing important.

2.2 Direct Image Alignment Formulation

\[
E_{ij}=\sum_{p\in P_i}\omega_p \left\| I_j[p'] - I_i[p] \right\|_\gamma
\]

where \(\omega_p\) is the weight which is shown as follows.(梯度越大权重越小,不知道为啥)
\[
\omega_p = \frac{c^2}{c^2+\left\| \nabla I_i(p) \right\| ^2_2}
\]

光度误差对突然的光照变化非常敏感。

2.3 Tracking

All the potins inside the active window are projected into the new frame. Then the pose of the new frame is optimized by minimizing the energy function.
在之前的单目DSO中,用随机深度值来初始化,所以都会需要一个确定模式的移动来初始化。在本文中,因为这时候stereo image pair的affine brightness transfer factor是位置的,所以用NCC在水平极限上的3*5的领域中搜索。

2.4 Frame Management

The basic idea is to check if the scene or the illumination has sufficiently changed.

  • scene change: 用mean square optical flow和 mean squared optical flow without rotation between the current frame and the last keyframe来衡量。
  • illumination change: 用relative brightness factor \(|a_j - a_i|\) 来衡量。

-> 一个点如果是梯度大于一个阈值并且是一个block里最大的点,那么他会被选择。

-> Before a candidate point is activated and optimized in the windowed optimization, its inverse depth is constantly refined by the following non-keyframes. (找出来怎么做的)

-> 旧去新来:在边缘化点的时候把候选点加入到联合优化中。

-> The constraints from static stereo introduce scale information into the system, and they also provide good geometric priors to temporal multi-view stereo.

2.5 Windowed Optimization

-> Temporal Multi-View Stereo: 就一般的不同时刻的图片之间的立体视觉
-> Static Stereo:
-> Stereo Coupling: 为了平衡上两种约束的权重,我们引入了\(\lambda\)参数。
-> Margninalization: 在边缘化一个关键帧之前,我们首先会边缘化所有没有被过去两个关键帧看到所有active window中的点。

3. Evaluation

暂且略过不表

4. Conclusion

未来可以做的两件事:

  • Loop closuring and a database for map maintenance (LDSO半闲居士做过了)
  • Dynamic object handling to further boost the VO accuracy and robustness. (用深度学习做动态物体检测然后动的点不要了?)
    虽然自己在SLAM领域还有很多可以学习的,但是这样感觉直接法的东西也做完了?悲伤。。

Paper Reading: Stereo DSO的更多相关文章

  1. [Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph

    <Exploiting Relevance Feedback in Knowledge Graph> Publication: KDD 2015 Authors: Yu Su, Sheng ...

  2. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  3. Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

    In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes ...

  4. Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...

  5. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  6. Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★

    Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...

  7. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  8. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

  9. Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...

随机推荐

  1. 【Spring-Controller 整理研究】@RequestMapping略解

    本文以纯后端的角度,去研究Spring Controller在各种情况的行为,及各种属性的作用. 实验准备 利用https://start.spring.io/快速生成一个开箱即用的小巧spring ...

  2. Flutter中SQLite数据库的使用

    同时支持android和ios 支持事务和批量操作 支持插入/查询/更新/删除操作 在iOS和Android上的后台线程中执行数据库操作 1.添加依赖 dependencies: ... sqflit ...

  3. 基于CentOS安装FTP服务器

    操作系统环境: CentOS Linux release 7.4.1708 (Core) 使用yum安装ftp服务: yum install -y vsftpd 添加系统用户作为登录ftp服务器并修改 ...

  4. 根据字符串导入包使用-----importlib

    import importlibo = importlib.import_module("xx.oo")s2 = "Person"the_class = get ...

  5. ActiveReports报表控件 V13 正式发布,提供在线报表设计和自适应报表布局

    重磅消息, ActiveReports V13 正式发布!本次更新 ActiveReports 将给您带来全新的报表设计体验:提供在线报表设计器.提供响应式布局和屏幕尺寸自适应能力.提供全新的图表…… ...

  6. 数据库-left join,right join,inner join,full join

    2019-04-18 22:36:26 sql中的连接查询有inner join(内连接).left join(左连接).right join(右连接).full join(全连接)四种方式,它们之间 ...

  7. google搜索引擎爬虫爬网站原理

    google搜索引擎爬虫爬网站原理 一.总结 一句话总结:从几个大站开始,然后开始爬,根据页面中的link,不断爬 从几个大站开始,然后开始爬,根据页面中的link,不断加深爬 1.搜索引擎和数据库检 ...

  8. 换行符java去除字符串中的空格、回车、换行符、制表符

    import java.util.regex.Matcher; import java.util.regex.Pattern; /** * @author lei * 2011-9-2 */ publ ...

  9. 利用scrapy-client 发布爬虫到远程服务端

    远程服务端Scrapyd先要开启 远程服务器必须装有scapyd,并开启. 这里远程服务开启的端口和ip: 192.166.12.80:6800 客户端配置和上传 先修爬虫项目文件scrapy.cfg ...

  10. Arthur and Walls CodeForces - 525D (bfs)

    大意: 给定格点图, 每个'.'的连通块会扩散为矩形, 求最后图案. 一开始想得是直接并查集合并然后差分, 但实际上是不对的, 这个数据就可以hack掉. 3 3 **. .** ... 正解是bfs ...