Paper Reading: Stereo DSO
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了。
Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras
Abstract
Optimization objectives:
- intrinsic/extrinsic parameters of all keyframes
- all selected pixels' depth
Integrate constraints from static stereo (左右两个相机的立体视觉约束是静态的) into the bundle adjustment pipeline of temporal multi-view stereo.
Fixed-baseline stereo resolves scale drift.
? It also reduces the sensitivities to large optical flow and to rolling shutter effect which are known shortcomings of direct image alignment methods.
1. Introduction
stem from: working in an effective way
heuristically: 启发式的
hallucinate: 出现幻觉
strip down: reduced to its simplest form
Strasdat et al. proposed to expand the concept of keyframes to integrate scale and proposed a double window optimization (Figure out what is it)
Direct methods aim at computing geometry and motion directly from the images thereby skipping the intermediate keypoint selection step.
The key idea of LSD SLAM is to incrementally track the camera and simultaneously perform a pose graph optimization in order to keep the entire camera trajectory globally consistent. 作者认为这种方式没有减少累计误差,只是把它扩散到整个轨迹中( So the meaning of pose graph is? )。
Three drawbacks of DSO:
- The mentioned performance was gained on a photometrically calibrated dataset, in its absense, the performance would degrade.
- Scale drift
- DSO is quite sensitive to geometric distortion as those induces by fast motion and rolling shutter. While techniques for calibrating rolling shutter exist for direct SLAM algorithm, these are often quite involved and far from real-time capable.
Contribution:
- A stereo version of DSO. detail the proposed combination of temporal multi-view stereo and static stereo.
- Stereo DSO is good.
2. Direct Sparse VO with Stereo Camera
- Absolute scale can be directly calculated from static stereo from the known baseline of the stereo camera
- Static stereo can provide initial depth estimation for multi-view stereo
- Static Stereo can only accurately triangulate 3D points within a limited depth range while this limit is resolved by temporal multi-view stereo.
New stereo frames are first tracked with respect to their reference keyframe in a coarse-to-fine mannar.
A joint optimization of their poses, affine brightness (两个参数:a和b) parameters, as well as the depts of all the observed 3D points and camera intrinsics, is performed.
2.1 Notation
Nothing important.
2.2 Direct Image Alignment Formulation
\[
E_{ij}=\sum_{p\in P_i}\omega_p \left\| I_j[p'] - I_i[p] \right\|_\gamma
\]
where \(\omega_p\) is the weight which is shown as follows.(梯度越大权重越小,不知道为啥)
\[
\omega_p = \frac{c^2}{c^2+\left\| \nabla I_i(p) \right\| ^2_2}
\]
光度误差对突然的光照变化非常敏感。
2.3 Tracking
All the potins inside the active window are projected into the new frame. Then the pose of the new frame is optimized by minimizing the energy function.
在之前的单目DSO中,用随机深度值来初始化,所以都会需要一个确定模式的移动来初始化。在本文中,因为这时候stereo image pair的affine brightness transfer factor是位置的,所以用NCC在水平极限上的3*5的领域中搜索。
2.4 Frame Management
The basic idea is to check if the scene or the illumination has sufficiently changed.
- scene change: 用mean square optical flow和 mean squared optical flow without rotation between the current frame and the last keyframe来衡量。
- illumination change: 用relative brightness factor \(|a_j - a_i|\) 来衡量。
-> 一个点如果是梯度大于一个阈值并且是一个block里最大的点,那么他会被选择。
-> Before a candidate point is activated and optimized in the windowed optimization, its inverse depth is constantly refined by the following non-keyframes. (找出来怎么做的)
-> 旧去新来:在边缘化点的时候把候选点加入到联合优化中。
-> The constraints from static stereo introduce scale information into the system, and they also provide good geometric priors to temporal multi-view stereo.
2.5 Windowed Optimization
-> Temporal Multi-View Stereo: 就一般的不同时刻的图片之间的立体视觉
-> Static Stereo:
-> Stereo Coupling: 为了平衡上两种约束的权重,我们引入了\(\lambda\)参数。
-> Margninalization: 在边缘化一个关键帧之前,我们首先会边缘化所有没有被过去两个关键帧看到所有active window中的点。
3. Evaluation
暂且略过不表
4. Conclusion
未来可以做的两件事:
- Loop closuring and a database for map maintenance (LDSO半闲居士做过了)
- Dynamic object handling to further boost the VO accuracy and robustness. (用深度学习做动态物体检测然后动的点不要了?)
虽然自己在SLAM领域还有很多可以学习的,但是这样感觉直接法的东西也做完了?悲伤。。
Paper Reading: Stereo DSO的更多相关文章
- [Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph
<Exploiting Relevance Feedback in Knowledge Graph> Publication: KDD 2015 Authors: Yu Su, Sheng ...
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- Paper Reading: In Defense of the Triplet Loss for Person Re-Identification
In Defense of the Triplet Loss for Person Re-Identification 2017-07-02 14:04:20 This blog comes ...
- Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...
- Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...
- Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★
Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...
- Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...
- Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )
Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...
- Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...
随机推荐
- kubernetes(k8s) helm安装kafka、zookeeper
通过helm在k8s上部署kafka.zookeeper 通过helm方法安装 k8s上安装kafka,可以使用helm,将kafka作为一个应用安装.当然这首先要你的k8s支持使用helm安装.he ...
- Literal绑定数据
前台: <asp:Literal ID = "ChiCunShow" runat = "server"></asp:Literal> 后 ...
- Java8分组(groupingBy)
1.分组,计数,排序 public class Java8Example1 { public static void main(String[] args) { List<String> ...
- 面试-java反射
问题:简述Java中的反射使用 答: 1.作用: 可以通过配置文件来动态配置和加载类,以实现软件工程理论里所提及的类与类,模块与模块之间的解耦.反射最经典的应用是spring框架. 2. 定义 反射简 ...
- oracle SQL性能分析之10053事件
优化器生成正确执行计划的前提条件是要有正确的统计信息,不准确的统计信息往往会导致错误的执行计划.当通过SQL和基数推断出的执行计划和实际执行计划不同时,就可以借助10053事件.10053事件是用来诊 ...
- arch安装以及配置记录
设置ip和网关 ifconfig eth0 10.82.16.233 netmask 255.255.255.0 route add default gw 10.82.16.1 或者 ip addr ...
- windows10下配置环境变量
环境变量 -> 系统变量中: 新建变量JAVA_HOME,值:jdk的安装路径 新建变量CLASSPATH,值:.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\ ...
- dubbo框架初步学习
dubbo简介 Dubbo是一个分布式服务框架,以及SOA治理方案.其功能主要包括:高性能NIO通讯及多协议集成,服务动态寻址与路由,软负载均衡与容错,依赖分析与降级等. 官网:http://dubb ...
- winform使用log4.net
因为我最近负责的Winform项目,好多都用到了这个log4net的日志功能,开发程序对数据一般都要求做到雁过留痕,所以日志对于我们程序员是不可或缺.因此我把对log4net的使用做一个记录总结,以便 ...
- UI组件--element-ui--Upload多组件自定义上传
需求: 提交详细信息的表单, 并上传对应图片(如下图), 后台接口要求表单数据和图片需要一次上传完成.. 分析: 实际上, 每个element-ui Upload组件都应发送一次请求, 很明显不符合我 ...