转:

http://www.cnblogs.com/jasonfreak/p/5448385.html

1 特征工程是什么?
2 数据预处理
  2.1 无量纲化
    2.1.1 标准化
    2.1.2 区间缩放法
    2.1.3 标准化与归一化的区别
  2.2 对定量特征二值化
  2.3 对定性特征哑编码
  2.4 缺失值计算
  2.5 数据变换
  2.6 回顾
3 特征选择
  3.1 Filter
    3.1.1 方差选择法
    3.1.2 相关系数法
    3.1.3 卡方检验
    3.1.4 互信息法
  3.2 Wrapper
    3.2.1 递归特征消除法
  3.3 Embedded
    3.3.1 基于惩罚项的特征选择法
    3.3.2 基于树模型的特征选择法
  3.4 回顾
4 降维
  4.1 主成分分析法(PCA)
  4.2 线性判别分析法(LDA)
  4.3 回顾
5 总结

 
 

http://www.cnblogs.com/jasonfreak/p/5448462.html

1 使用sklearn进行数据挖掘
  1.1 数据挖掘的步骤
  1.2 数据初貌
  1.3 关键技术
2 并行处理
  2.1 整体并行处理
  2.2 部分并行处理
3 流水线处理
4 自动化调参
5 持久化
6 回顾

http://pandas.pydata.org/pandas-docs/stable/10min.html

10minites to pandas

http://blog.csdn.net/march_on/article/details/48650237

smote算法的思想是合成新的少数类样本,合成的策略是对每个少数类样本a,从它的最近邻中随机选一个样本b,然后在a、b之间的连线上随机选一点作为新合成的少数类样本。

 
 

skearn/pandas的更多相关文章

  1. 用 scikit-learn 和 pandas 学习线性回归

      用 scikit-learn 和 pandas 学习线性回归¶ from https://www.cnblogs.com/pinard/p/6016029.html 就算是简单的算法,也需要跑通整 ...

  2. Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes

    Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = ...

  3. Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression

    Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression 一. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题, ...

  4. pandas基础-Python3

    未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...

  5. 10 Minutes to pandas

    摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一 ...

  6. 利用Python进行数据分析(15) pandas基础: 字符串操作

      字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...

  7. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  8. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  9. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

随机推荐

  1. 加密解密 AES RSA MD5 SHA

    加密解密: 对称加密:加密和解密相同秘钥.常见算法:AES, XTEA, 3DES. 非对称加密: 公钥加密 私钥加密. 加密和解密秘钥不同.常见算法:RSA OpenSSL> genrsa - ...

  2. nodejs安装 淘宝镜像

    1◆ nodejs下载 2◆ 安装 3◆ 测试   4◆ 淘宝镜像 npm install -g cnpm --registry=https://registry.npm.taobao.org   5 ...

  3. Theano笔记

    scan函数 theano.scan(fn, sequences=None, outputs_info=None,non_sequences=None, n_steps=None, truncate_ ...

  4. Weka里如何将arff文件或csv文件批量导入MySQL数据库(六)

    这里不多说,直接上干货! 前提博客是 Weka中数据挖掘与机器学习系列之数据格式ARFF和CSV文件格式之间的转换(四) 1.将arff文件批量导入MySQL数据库 我在这里,arff文件以Weka安 ...

  5. Python 自然语言处理笔记(一)

    一. NLTK的几个常用函数 1. Concordance 实例如下: >>> text1.concordance("monstrous") Displaying ...

  6. Win10系列:JavaScript 项目模板和项模板

    使用Visual Studio 开发Windows应用商店应用时,通过其提供的模板可以帮助我们快速地创建一个应用.其中,在新建一个Windows应用商店应用程序项目时可以在项目模板中选择所需要的模板类 ...

  7. learning ddr input clock frequency change condition

  8. [BZOJ1269]文本编辑器editor

    Problem 有n个操作 Solution splay模板题,用splay维护下标. Notice 需要把l的前一个位置旋转到根,r的后一个位置旋转到根的右节点.所以特别要注意0的大坑. Code ...

  9. SpringMVC中文乱码的解决办法

    中文乱码分类: (1)按照请求分类: GET请求乱码 POST请求乱码 (2)按照乱码位置分类 从前台传到后台的数据乱码(存储到数据库中的数据乱码) 从后台传到前台的数据乱码(显示在页面的数据乱码) ...

  10. PM2报错‘Spawning PM2 daemon with pm2_home...’的解决方案

    问题 在某次因为SRE升级域名问题,导致了Node服务器代码死循环了,产生的504(Gateway timeout)错误. 登录到机器上看,正在用pm2查问题的原因中,突然发现错误从504变成的502 ...