Scrambled Polygon
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 7799   Accepted: 3707

Description

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex. 
A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".) The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem. 
The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0). 
To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point.  

Input

The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon's border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below.

Sample Input

0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10

Sample Output

(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)
题意:给你一系列点,让输出一个凸多边形的各点,把斜率从大到小排序就好了;
代码;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x);
struct Node{
int x,y;
/*friend bool operator < (Node a,Node b){
if(a.x!=b.x)return a.x<b.x;
else return a.y<b.y;
}*/
}dt[100010];
int cross(Node a,Node b){
return a.x*b.y-a.y*b.x;
}
int cmp(Node a,Node b){
if(cross(a,b)>0)return 1;
else return 0;
}
int main(){
int k=0;
while(~scanf("%d%d",&dt[k].x,&dt[k].y))k++;
sort(dt+1,dt+k,cmp);
for(int i=0;i<k;i++)printf("(%d,%d)\n",dt[i].x,dt[i].y);
return 0;
}

  

Scrambled Polygon(斜率排序)的更多相关文章

  1. poj 2007 Scrambled Polygon 极角排序

    /** 极角排序输出,,, 主要atan2(y,x) 容易失精度,,用 bool cmp(point a,point b){ 5 if(cross(a-tmp,b-tmp)>0) 6 retur ...

  2. Scrambled Polygon(凸多边形,斜率)

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7805   Accepted: 3712 ...

  3. POJ 2007 Scrambled Polygon [凸包 极角排序]

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8636   Accepted: 4105 ...

  4. POJ 2007 Scrambled Polygon 凸包

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7214   Accepted: 3445 ...

  5. 【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2605  Solved: 914[Submit][Stat ...

  6. poj 2007 Scrambled Polygon(极角排序)

    http://poj.org/problem?id=2007 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6701   A ...

  7. 简单几何(极角排序) POJ 2007 Scrambled Polygon

    题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time ...

  8. POJ 2007 Scrambled Polygon (简单极角排序)

    题目链接 题意 : 对输入的点极角排序 思路 : 极角排序方法 #include <iostream> #include <cmath> #include <stdio. ...

  9. POJ 2007 Scrambled Polygon(简单极角排序)

    水题,根本不用凸包,就是一简单的极角排序. 叉乘<0,逆时针. #include <iostream> #include <cstdio> #include <cs ...

随机推荐

  1. JAVA 语 言 如 何 进 行 异 常 处 理 , 关 键 字 : throws,throw,try,catch,final

    throws是获取异常throw是抛出异常try是将会发生异常的语句括起来,从而进行异常的处理,catch是如果有异常就会执行他里面的语句,而finally不论是否有异常都会进行执行的语句.

  2. 使用sql语句创建表、修改表、添加列等

    1. 创建表: CREATE TABLE 学生信息 (    学号 varchar(14) IDENTITY(1,1) PRIMARY KEY,    姓名 varchar(8) UNIQUE NOT ...

  3. R包——ggplot2(二)

    关于ggplot包(二) 关于ggplot包(二) 标尺(Scale) 从前面可以看到,画图其实就是在做映射,不管是映射到不同的几何对象上,还是映射各种图形属性.在对图形属性进行映射之后,使用标尺可以 ...

  4. 模拟post请求(PHP)

    <?php //=========================模拟post请求==================================== // ================ ...

  5. 树的判断(poj nyoj hduoj)

    题目: http://ac.jobdu.com/problem.php?pid=1481 http://acm.nyist.net/JudgeOnline/problem.php?pid=129 ht ...

  6. 【基础】常用的机器学习&数据挖掘知识点

    Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),ML ...

  7. 用extundelete恢复rm -rf删的文件

    “慎用rm -rf命令,除非你知道此命令带来的后果.”这是一条Linux用户守则,虽然大多数用户都明白这条语句的含义,但是我觉得还需要完善一下,为这条语句加 上一个使用前提:在你确认自己拥有清醒头脑, ...

  8. CentOS ips bonding

    centos ip bonding 一个网卡多个ips,多个网口一个ip 1,配置一个网卡多ips的情况cp /etc/sysconfig/network-scripts/ifcfg-eth0 /et ...

  9. 一步一步学android之布局管理器——LinearLayout

    线性布局是最基本的一种布局,在基本控件篇幅中用到的都是LinearLayout,线性布局有两种方式,前面也有用到,一种是垂直的(vertical),一种是水平的(horizontal).我们同样来看下 ...

  10. 手把手教你在openshift上搭建wordpress博客(二)

    相同公布于:http://www.longgaming.com/archives/128 推荐前往阅读 这一篇文章主要介绍一些经常使用插件的使用和配置. 下面是我个人安装的一些插件.大家能够依据须要自 ...