问题的唯一难点就是如何表示队长能看到的人数?如果建系,队长所在的点为(0,0)分析几组数据就一目了然了,如果队长能看到的点为(m,n),那么gcd(m,n)=1即m n 互质或者是(0,1),(1,0)两点。证明很简单,如果gcd(m,n)=d 那么(m/d,n/d)必然会挡住点(m,n),所以gcd(m,n)=1是必然的。这样问题就划归到2到n-1有多少数互质。由于欧拉函数的意义是小于n的与n互质的数的个数,所以知道欧拉函数意义的人都能第一时间想到答案就是t=φ(2)+φ(3)+…+φ(n-1) ,如果点(m,n)可以被看到,根据对称性(n,m)也可以被看到,再加上(1,1)(由于(1,1)是唯一不具有对称性的点所以分开来考虑)(0,1),(1,0)三点,所以答案 ans=t*2+3 ,如果定义φ(1)=1 那么答案就是φ(1)+φ(2)+φ(3)+…+φ(n-1)+1了

#include<iostream>

#include<cstdio>

#include <math.h>

using namespace std;

int prime[20000]={0},t;

bool isprime(int k)

{

for (int i=1;i<=t-1;i++)

{

if (k % prime[i]==0)return false;

}

return true;

}

int euler(int k)

{

intnow=1,e=1,i;

while(k!=1)

{

for(i=now;i<=t-1;i++)

{

now++;

if(k % prime[i]==0)break;

}

e=e*(prime[i]-1);k=k/prime[i];

while (k % prime[i]==0)

{

e=e*prime[i];

k=k/prime[i];

}

}

returne;

}

int main()

{

t=2;

int m,n,i,ans=0;

scanf("%d",&n);

prime[1]=2;

for (i=2;i<=40000;i++)

{

m=i*2-1;

if (isprime(m))

{

prime[t]=m;

t++;

}

}

for(i=1;i<=n-1;i++)

{

ans+=euler(i);

}

ans=ans*2+1;

printf("%d",ans);

return 0;

}

BZOJ 2190仪仗队【欧拉函数】的更多相关文章

  1. Bzoj-2190 仪仗队 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 简单的欧拉函数题,实际上就是求gcd(x,y)=1, 0<=x,y<=n ...

  2. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  3. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  4. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. P2158 [SDOI2008]仪仗队 欧拉函数模板

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  6. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  7. 【P2158】仪仗队&欧拉函数详解

    来一道数论题吧. 这个题一眼看上去思路明确,应该是数论,但是推导公式的时候却出了问题,根本看不出来有什么规律.看了马佬题解明白了这么个规律貌似叫做欧拉函数,于是就去百度学习了一下这东西. 欧拉函数的含 ...

  8. luogu2158 [SDOI2008]仪仗队 欧拉函数

    点 $ (i,j) $ 会看不见当有 $ k|i $ 且 $ k|j$ 时. 然后就成了求欧拉函数了. #include <iostream> #include <cstring&g ...

  9. 洛谷 - P2158 - 仪仗队 - 欧拉函数

    https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...

  10. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

随机推荐

  1. 项目经验——jboss 配置数据库连接池

    数据库的连接和关闭是非常消耗系统资源的,在多层结构的应用环境中,这种资源消耗又直接的反映到系统性能上来.在项目实际应用中,最常用的解决方案便是建立数据库连接池. 一.数据库连接池基本原理 当程序启动时 ...

  2. Python 字符编码问题的处理

    python中的字符编码问题往往是初学者容易弄不明白的问题, 要想将这个问题搞清楚,需要先弄明白以下的概念 decode 和 encode 函数的作用 字符串字面量的编码格式 decode(str)  ...

  3. 1.JOIN和UNION区别

    1.JOIN和UNION区别join 是两张表做交连后里面条件相同的部分记录产生一个记录集,union是产生的两个记录集(字段要一样的)并在一起,成为一个新的记录集 . JOIN用于按照ON条件联接两 ...

  4. 测试类执行报错:AttributeError: 'Testlei' object has no attribute 'test_cases' 和data,unpack用法解析

    a=[{"}] import unittest from ddt import ddt,data,unpack @ddt class Testlei(unittest.TestCase): ...

  5. 爬虫_python3_requests

    Requests 网络资源(URLs)撷取套件 改善Urllib2的缺点,让使用者以最简单的方式获取网络资源 可以使用REST操作(POST,PUT,GET,DELETE)存取网络资源 import ...

  6. Mac下搜索神兵利器Alfred 3.1.1最新和谐版

    http://bbs.feng.com/read-htm-tid-9891194.html 相比Windows而言Mac自带的Spotlight搜索已经非常强大了,尤其是Mac OS Yosemite ...

  7. Mac 安装和卸载 Mysql5.7.11 的方法

    安装 去http://www.mysql.com/downloads/, 选择最下方的MySQL Community Edition,点击MySQL Community Server的download ...

  8. 【Qt】2.1 创建对话框

    QDialog是Qt对话框类,可以直接使用这个类来创建对象并显示出来. 要使用一个对话框,就这样子写: #include <QApplication> #include <QDial ...

  9. shell脚本,awk 根据文件某列去重并且统计该列频次。

    a文件为 a a a s s d .怎么把a文件变为 a s d .怎么把a文件变为 a a a s s d 解题方法如下: 解题思路 [root@localhost study]# awk 'NR= ...

  10. ios runloop学习

    今天突然才之间才意识到NSTimer这样的运行方式,是在多线程中实现的循环还是在主线程中去实现的呢.当然不可能是在主线程中的while那么简单,那样什么都干不了,简单看了下NSTimer是以同步方式运 ...