mapreduce代码主要包括三个类,map类、reduce类以及测试类!

以wordcount为例,

map类为:

    static class WordMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreElements()) {
word.set(itr.nextToken());
context.write(word, one);
} }
}

reduce类为:

    static class WordReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
private IntWritable res = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException
{
int sum = 0;
for(IntWritable val:values){
sum += val.get();
}
res.set(sum);
context.write(key, res);
}
}

主函数代码为:

    public static void main(String args[]) throws Exception{
String inputfilepath = "hdfs://localhost:9000/input1";
String outputfilepath = "hdfs://localhost:9000/output4";
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJarByClass(WordCount.class);
job.setJobName("word-count"); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(WordMapper.class);
job.setReducerClass(WordReducer.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(inputfilepath));
FileOutputFormat.setOutputPath(job, new Path(outputfilepath));
job.waitForCompletion(true);
}

其他的hadoop简单实例代码如:

数字求和:

 package goal;

 import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class Sum { public static class SumMapper extends
Mapper<Object, Text, Text, FloatWritable>{
private Text word = new Text("sum");
private static FloatWritable nv = new FloatWritable(1.0f);
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException
{
StringTokenizer str = new StringTokenizer(value.toString());
float sum = 0;
while(str.hasMoreTokens()){
String s = str.nextToken();
float val = Float.parseFloat(s);
sum = val;
}
nv.set(sum);
context.write(word, nv);
}
}
public static class SumReducer extends
Reducer<Text, FloatWritable, Text, FloatWritable>{
private Text k = new Text("sum");
private FloatWritable res = new FloatWritable();
public void reduce(Text key, Iterable<FloatWritable> values,
Context context) throws IOException, InterruptedException{
float sum = 0;
for(FloatWritable val : values){
float v = val.get();
sum += v;
}
res.set(sum);
context.write(k, res);
}
} public static void main(String args[])throws Exception{
String other[] = {"hdfs://localhost:9000/input2/1.txt", "hdfs://localhost:9000/output3"};
Configuration conf = new Configuration();
System.out.println("yes");
Job job = new Job(conf, "number sum");
job.setJarByClass(Sum.class);
job.setMapperClass(SumMapper.class);
job.setReducerClass(SumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);
FileInputFormat.addInputPath(job, new Path(other[0]));
FileOutputFormat.setOutputPath(job, new Path(other[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
System.out.println("yes");
} }

mapreduce代码实现入门的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  2. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  3. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  4. Centos下命令行编译MapReduce代码(Java)并打包在Hadoop中执行

    前提条件:搭建好Hadoop系统 新建文件夹:input  和  output hdfs dfs -mkdir /inputhdfs dfs -mkdir /output 查看文件系统 hdfs df ...

  5. 【甘道夫】官方网站MapReduce代码注释具体实例

    引言 1.本文不描写叙述MapReduce入门知识,这类知识网上非常多.请自行查阅 2.本文的实例代码来自官网 http://hadoop.apache.org/docs/current/hadoop ...

  6. 大数据(6) - MapReduce简易介绍入门

    一 MapReduce入门 MapReduce定义(简单来说就是hadoop的数据分析核心,理解其中的原理,则可以分析聚合一切需求) Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于 ...

  7. Hadoop MapReduce编程 API入门系列之薪水统计(三十一)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import jav ...

  8. Hadoop MapReduce编程 API入门系列之小文件合并(二十九)

    不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 ...

  9. Hadoop MapReduce编程 API入门系列之mr编程快捷键活用技巧详解(四)

    1.Shift + Alt + S Hadoop没有使用jdk自带的默认序列化机制. 现在呢,hadoop-2.*里有两套序列化机制.一个是自己hadoop的序列化机制,一个是谷歌的. 所以,要改为. ...

随机推荐

  1. Atcoder CODE FESTIVAL 2017 qual C C - Inserting 'x' 回文串

    题目链接 题意 给定字符串\(s\),可以在其中任意位置插入字符\(x\). 问能否得到一个回文串,若能,需插入多少个\(x\). 思路 首先统计出现次数为奇数的字符\(cnt\). \(cnt\ge ...

  2. [原创] 树莓派个人实测 Q&A(最新修改使用windows连接远程桌面)

    原文出处:http://www.eeboard.com/bbs/thread-5191-1-1.html 这篇帖子我打算用Q&A的方式来编写,这样大家更容易一目了然的看明整个帖子的内容,层次分 ...

  3. MOSFET 符號解說

    符號 上面這個是 空乏型 的 MOSFET 符號 (有做過修改), 一個是 P channel, 一個是 N channel, 空乏型本身就有通道,所以中間是沒有斷掉的直線, P 代表 + , 有外放 ...

  4. LeetCode OJ--Binary Tree Zigzag Level Order Traversal *

    https://oj.leetcode.com/problems/binary-tree-zigzag-level-order-traversal/ 树的层序遍历 使用两个 stack 或者 vect ...

  5. AC日记——营业额统计 codevs 1296 (splay版)

    营业额统计 思路: 每次,插入一个点: 然后找前驱后继: 来,上代码: #include <cmath> #include <cstdio> #include <iost ...

  6. webpack常用配置项配置文件介绍

    一.webpack基础 1.在项目中生成package.json:在项目根目录中输入npm init,根据提示输入相应信息.(也可以不生成package.json文件,但是package.json是很 ...

  7. POJ 2486 Apple Tree [树状DP]

    题目:一棵树,每个结点上都有一些苹果,且相邻两个结点间的距离为1.一个人从根节点(编号为1)开始走,一共可以走k步,问最多可以吃多少苹果. 思路:这里给出数组的定义: dp[0][x][j] 为从结点 ...

  8. Vuex 通俗版教程

    作者 Yeaseon 已关注 2017.03.16 16:44* 字数 1245 阅读 243评论 2喜欢 4 本文基本上是官方教程的盗版,用通俗易懂的文字讲解Vuex,也对原文内容有删减. 如果你对 ...

  9. struts_hibernate登陆范例

    开发工具:MyEclipse 6.0 ,Tomcat 5.5 ,JDK 1.5  ,MySQL 5.0 :开发准备:下载Struts 2.0和Hibernate 3.2,大家可Struts和Hiber ...

  10. tomcat 登录时用户名和密码问题

    在编程的时候我们经常在myeclipes中直接部署web程序,大多数情况下不会登陆tomcat,这样时间长了我们就忘记了tomcat的登陆用户名和密码,下面就说一下怎么找到tomcat的用户名和密码吧 ...