mapreduce代码主要包括三个类,map类、reduce类以及测试类!

以wordcount为例,

map类为:

    static class WordMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreElements()) {
word.set(itr.nextToken());
context.write(word, one);
} }
}

reduce类为:

    static class WordReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
private IntWritable res = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException
{
int sum = 0;
for(IntWritable val:values){
sum += val.get();
}
res.set(sum);
context.write(key, res);
}
}

主函数代码为:

    public static void main(String args[]) throws Exception{
String inputfilepath = "hdfs://localhost:9000/input1";
String outputfilepath = "hdfs://localhost:9000/output4";
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJarByClass(WordCount.class);
job.setJobName("word-count"); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(WordMapper.class);
job.setReducerClass(WordReducer.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(inputfilepath));
FileOutputFormat.setOutputPath(job, new Path(outputfilepath));
job.waitForCompletion(true);
}

其他的hadoop简单实例代码如:

数字求和:

 package goal;

 import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class Sum { public static class SumMapper extends
Mapper<Object, Text, Text, FloatWritable>{
private Text word = new Text("sum");
private static FloatWritable nv = new FloatWritable(1.0f);
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException
{
StringTokenizer str = new StringTokenizer(value.toString());
float sum = 0;
while(str.hasMoreTokens()){
String s = str.nextToken();
float val = Float.parseFloat(s);
sum = val;
}
nv.set(sum);
context.write(word, nv);
}
}
public static class SumReducer extends
Reducer<Text, FloatWritable, Text, FloatWritable>{
private Text k = new Text("sum");
private FloatWritable res = new FloatWritable();
public void reduce(Text key, Iterable<FloatWritable> values,
Context context) throws IOException, InterruptedException{
float sum = 0;
for(FloatWritable val : values){
float v = val.get();
sum += v;
}
res.set(sum);
context.write(k, res);
}
} public static void main(String args[])throws Exception{
String other[] = {"hdfs://localhost:9000/input2/1.txt", "hdfs://localhost:9000/output3"};
Configuration conf = new Configuration();
System.out.println("yes");
Job job = new Job(conf, "number sum");
job.setJarByClass(Sum.class);
job.setMapperClass(SumMapper.class);
job.setReducerClass(SumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);
FileInputFormat.addInputPath(job, new Path(other[0]));
FileOutputFormat.setOutputPath(job, new Path(other[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
System.out.println("yes");
} }

mapreduce代码实现入门的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  2. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  3. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  4. Centos下命令行编译MapReduce代码(Java)并打包在Hadoop中执行

    前提条件:搭建好Hadoop系统 新建文件夹:input  和  output hdfs dfs -mkdir /inputhdfs dfs -mkdir /output 查看文件系统 hdfs df ...

  5. 【甘道夫】官方网站MapReduce代码注释具体实例

    引言 1.本文不描写叙述MapReduce入门知识,这类知识网上非常多.请自行查阅 2.本文的实例代码来自官网 http://hadoop.apache.org/docs/current/hadoop ...

  6. 大数据(6) - MapReduce简易介绍入门

    一 MapReduce入门 MapReduce定义(简单来说就是hadoop的数据分析核心,理解其中的原理,则可以分析聚合一切需求) Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于 ...

  7. Hadoop MapReduce编程 API入门系列之薪水统计(三十一)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import jav ...

  8. Hadoop MapReduce编程 API入门系列之小文件合并(二十九)

    不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 ...

  9. Hadoop MapReduce编程 API入门系列之mr编程快捷键活用技巧详解(四)

    1.Shift + Alt + S Hadoop没有使用jdk自带的默认序列化机制. 现在呢,hadoop-2.*里有两套序列化机制.一个是自己hadoop的序列化机制,一个是谷歌的. 所以,要改为. ...

随机推荐

  1. Spring Boot学习——AOP编程的简单实现

    首先应该明白一点,AOP是一种编程范式,是一种程序设计思想,与具体的计算机编程语言无关,所以不止是Java,像.Net等其他编程语言也有AOP的实现方式.AOP的思想理念就是将通用逻辑从业务逻辑中分离 ...

  2. 分享C#识别图片上的数字

    通过Emgu实现对图片上的数字进行识别.前期步骤:1.下载Emgu安装文件,我的版本是2.4.2.1777.3.0版本则实现对中文的支持.2.安装后需填写环境变量,环境变量Path值后加入Emgu安装 ...

  3. 对动态规划(Dynamic Programming)的理解:从穷举开始(转)

    转自:http://janfan.cn/chinese/2015/01/21/dynamic-programming.html 动态规划(Dynamic Programming,以下简称dp)是算法设 ...

  4. Codeforces 371B Fox Dividing Cheese(简单数论)

    题目链接 Fox Dividing Cheese 思路:求出两个数a和b的最大公约数g,然后求出a/g,b/g,分别记为c和d. 然后考虑c和d,若c或d中存在不为2,3,5的质因子,则直接输出-1( ...

  5. Add and Search Word - Data structure design - LeetCode

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  6. POJ 1155 TELE [树状DP]

    题意:略. 思路:用dp[i][k]来表示结点i给k个用户提供节目时的最大盈利(可能为负). 则递推方程为: dp[i][j] = max(dp[i][j], dp[i][m] + dp[v][j-m ...

  7. API网关服务Zuul-Spring Cloud学习第五天(非原创)

    文章大纲 一.Zuul是什么二.Zuul的基本实现三.路由配置细节四.异常处理细节五.项目源码与参考资料下载六.参考文章   一.Zuul是什么   到目前为止,我们Spring Cloud中的内容已 ...

  8. js 拦截全局 ajax 请求

    你是否有过下面的需求:需要给所有ajax请求添加统一签名.需要统计某个接口被请求的次数.需要限制http请求的方法必须为get或post.需要分析别人网络协议等等,那么如何做?想想,如果能够拦截所有a ...

  9. 【ActiveMQ】1.下载安装启动使用

    官网下载:http://activemq.apache.org/activemq-5121-release.html 官网指导文档:http://activemq.apache.org/version ...

  10. Scut游戏服务器引擎5.6.3.5发布

    版本:5.6.3.5 (2013-11-25) 1. 优化实体ChangeKey队列,减少写库IO(默认为5分钟写入一次数据库) 2. 优化Protobuf序列化启用自动GZip压缩,减少Redis内 ...