Machine Learning for hackers读书笔记(六)正则化:文本回归
data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\'
ranks <- read.csv(file.path(data, 'oreilly.csv'),stringsAsFactors = FALSE)
library('tm')
documents <- data.frame(Text = ranks$Long.Desc.)
row.names(documents) <- 1:nrow(documents)
#获得语料库
corpus <- Corpus(DataframeSource(documents))
#R2版本用corpus <- tm_map(corpus, tolower)
corpus <- tm_map(corpus, content_transformer(tolower))
#R2版本用corpus <- tm_map(corpus, stripWhitespace)
corpus <- tm_map(corpus, content_transformer(stripWhitespace))
#去除英文停用词
corpus <- tm_map(corpus, removeWords, stopwords('english'))
#得到词项文档矩阵
dtm <- DocumentTermMatrix(corpus)
x <- as.matrix(dtm)
y <- rev(1:100) #反转1..100,结果是100..1
set.seed(1)
library('glmnet')
performance <- data.frame()
for (lambda in c(0.1, 0.25, 0.5, 1, 2, 5))
{
for (i in 1:50)
{
indices <- sample(1:100, 80)
training.x <- x[indices, ]
training.y <- y[indices]
test.x <- x[-indices, ]
test.y <- y[-indices]
glm.fit <- glmnet(training.x, training.y)
predicted.y <- predict(glm.fit, test.x, s = lambda)
rmse <- sqrt(mean((predicted.y - test.y) ^ 2))
performance <- rbind(performance,data.frame(Lambda = lambda,Iteration = i,RMSE = rmse))
}
}
ggplot(performance, aes(x = Lambda, y = RMSE)) +stat_summary(fun.data = 'mean_cl_boot', geom = 'errorbar') +
stat_summary(fun.data = 'mean_cl_boot', geom = 'point')
#从图上看,失败
#失败了作分类,判断一本书能不能进前50
y <- rep(c(1, 0), each = 50)
#作逻辑回归
regularized.fit <- glmnet(x, y, family = 'binomial')
#预测一下
predict(regularized.fit, newx = x, s = 0.001)
#出来的结果并不是分类,而是一堆数值,因此改一下
ifelse(predict(regularized.fit, newx = x, s = 0.001) > 0, 1, 0)
#第二种方法,把预测结果转成概率值
library('boot')
inv.logit(predict(regularized.fit, newx = x, s = 0.001))
#看效果
set.seed(1)
performance <- data.frame()
for (i in 1:250)
{
indices <- sample(1:100, 80)
training.x <- x[indices, ]
training.y <- y[indices]
test.x <- x[-indices, ]
test.y <- y[-indices]
for (lambda in c(0.0001, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.5, 0.1))
{
glm.fit <- glmnet(training.x, training.y, family = 'binomial')
predicted.y <- ifelse(predict(glm.fit, test.x, s = lambda) > 0, 1, 0)
error.rate <- mean(predicted.y != test.y)
performance <- rbind(performance,data.frame(Lambda = lambda,Iteration = i,ErrorRate = error.rate))
}
}
#画个图
ggplot(performance, aes(x = Lambda, y = ErrorRate)) +
stat_summary(fun.data = 'mean_cl_boot', geom = 'errorbar') +
stat_summary(fun.data = 'mean_cl_boot', geom = 'point') +scale_x_log10()
Machine Learning for hackers读书笔记(六)正则化:文本回归的更多相关文章
- Machine Learning for hackers读书笔记(十二)模型比较
library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...
- Machine Learning for hackers读书笔记(七)优化:密码破译
#凯撒密码:将每一个字母替换为字母表中下一位字母,比如a变成b. english.letters <- c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i' ...
- Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤
#定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...
- Machine Learning for hackers读书笔记_一句很重要的话
为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.
- Machine Learning for hackers读书笔记(十)KNN:推荐系统
#一,自己写KNN df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\ ...
- Machine Learning for hackers读书笔记(九)MDS:可视化地研究参议员相似性
library('foreign') library('ggplot2') data.dir <- file.path('G:\\dataguru\\ML_for_Hackers\\ML_for ...
- Machine Learning for hackers读书笔记(八)PCA:构建股票市场指数
library('ggplot2') prices <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\08-PC ...
- Machine Learning for hackers读书笔记(五)回归模型:预测网页访问量
线性回归函数 model<-lm(Weight~Height,data=?) coef(model):得到回归直线的截距 predict(model):预测 residuals(model):残 ...
- Machine Learning for hackers读书笔记(四)排序:智能收件箱
#数据集来源http://spamassassin.apache.org/publiccorpus/ #加载数据 library(tm)library(ggplot2)data.path<-'F ...
随机推荐
- samsung-smart app 开发
http://www.samsungdforum.com/ http://seller.samsungapps.com/login/signIn.as?returnURL=%2fmain%2fsell ...
- Java日志记录的事儿
一.java日志组件 1.common-logging common-logging是apache提供的一个通用的日志接口.用户可以自由选择第三方的日志组件作为具体实现,像log4j,或者jdk自带的 ...
- iOS终端查看.a文件是否能在模拟器上运行
复制文件路径进去: 红色框框里面没有x86所以模拟器运行会报错
- POJ 1995
#include <iostream> using namespace std; long long power(long long a, long long b, long long m ...
- ExtJs布局之tabPanel
<!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...
- 在WCF中使用消息队列
在一些大型的解决方案中,假设我们的服务没有办法一直在线,或者因为这样那样的原因宕机了,有没有什么办法让客户端的影响最小化呢?答案是可以通过消息队列的方式,哪怕服务是没有在线的,客户端依然可以继续操作. ...
- poj 3522(最小生成树应用)
题目链接:http://poj.org/problem?id=3522思路:题目要求最小生成树中最大边与最小边的最小差值,由于数据不是很大,我们可以枚举最小生成树的最小边,然后kruskal求最小生成 ...
- [转载]Jmeter那点事·ForEach和If控制器
如果我们要实现一个循环,如果城市是北京,则返回首都:否则,返回城市. 一.新建用户自定义变量 添加-配置元件-用户自定义变量, 定义变量注意命名格式:变量名 加 下划线 加 数字(从1开始计数) ...
- 6 tips for recovering from a flop
6 tips for recovering from a flop职场没有失败:6招走出工作失误阴影"We all make mistakes, if we're going to lear ...
- ios--集成支付宝钱包支付iOS SDK的方法与经验
文/胖花花(简书作者)原文链接:http://www.jianshu.com/p/fe56e122663e著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 没想到,支付宝的SDK是我目前 ...