data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\'

ranks <- read.csv(file.path(data, 'oreilly.csv'),stringsAsFactors = FALSE)

library('tm')

documents <- data.frame(Text = ranks$Long.Desc.)
row.names(documents) <- 1:nrow(documents)

#获得语料库

corpus <- Corpus(DataframeSource(documents))

#R2版本用corpus <- tm_map(corpus, tolower)

corpus <- tm_map(corpus, content_transformer(tolower))

#R2版本用corpus <- tm_map(corpus, stripWhitespace)

corpus <- tm_map(corpus, content_transformer(stripWhitespace))

#去除英文停用词
corpus <- tm_map(corpus, removeWords, stopwords('english'))

#得到词项文档矩阵

dtm <- DocumentTermMatrix(corpus)

x <- as.matrix(dtm)
y <- rev(1:100)  #反转1..100,结果是100..1

set.seed(1)

library('glmnet')

performance <- data.frame()

for (lambda in c(0.1, 0.25, 0.5, 1, 2, 5))
{
for (i in 1:50)
{
indices <- sample(1:100, 80)

training.x <- x[indices, ]
training.y <- y[indices]

test.x <- x[-indices, ]
test.y <- y[-indices]

glm.fit <- glmnet(training.x, training.y)

predicted.y <- predict(glm.fit, test.x, s = lambda)

rmse <- sqrt(mean((predicted.y - test.y) ^ 2))

performance <- rbind(performance,data.frame(Lambda = lambda,Iteration = i,RMSE = rmse))
}
}

ggplot(performance, aes(x = Lambda, y = RMSE)) +stat_summary(fun.data = 'mean_cl_boot', geom = 'errorbar') +

stat_summary(fun.data = 'mean_cl_boot', geom = 'point')

#从图上看,失败

#失败了作分类,判断一本书能不能进前50

y <- rep(c(1, 0), each = 50)

#作逻辑回归

regularized.fit <- glmnet(x, y, family = 'binomial')

#预测一下

predict(regularized.fit, newx = x, s = 0.001)

#出来的结果并不是分类,而是一堆数值,因此改一下

ifelse(predict(regularized.fit, newx = x, s = 0.001) > 0, 1, 0)

#第二种方法,把预测结果转成概率值

library('boot')

inv.logit(predict(regularized.fit, newx = x, s = 0.001))

#看效果

set.seed(1)

performance <- data.frame()

for (i in 1:250)
{
indices <- sample(1:100, 80)

training.x <- x[indices, ]
training.y <- y[indices]

test.x <- x[-indices, ]
test.y <- y[-indices]

for (lambda in c(0.0001, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.5, 0.1))
{
glm.fit <- glmnet(training.x, training.y, family = 'binomial')
predicted.y <- ifelse(predict(glm.fit, test.x, s = lambda) > 0, 1, 0)
error.rate <- mean(predicted.y != test.y)

performance <- rbind(performance,data.frame(Lambda = lambda,Iteration = i,ErrorRate = error.rate))

}
}

#画个图
ggplot(performance, aes(x = Lambda, y = ErrorRate)) +
stat_summary(fun.data = 'mean_cl_boot', geom = 'errorbar') +
stat_summary(fun.data = 'mean_cl_boot', geom = 'point') +scale_x_log10()

Machine Learning for hackers读书笔记(六)正则化:文本回归的更多相关文章

  1. Machine Learning for hackers读书笔记(十二)模型比较

    library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...

  2. Machine Learning for hackers读书笔记(七)优化:密码破译

    #凯撒密码:将每一个字母替换为字母表中下一位字母,比如a变成b. english.letters <- c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i' ...

  3. Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤

    #定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...

  4. Machine Learning for hackers读书笔记_一句很重要的话

    为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.

  5. Machine Learning for hackers读书笔记(十)KNN:推荐系统

    #一,自己写KNN df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\ ...

  6. Machine Learning for hackers读书笔记(九)MDS:可视化地研究参议员相似性

    library('foreign') library('ggplot2') data.dir <- file.path('G:\\dataguru\\ML_for_Hackers\\ML_for ...

  7. Machine Learning for hackers读书笔记(八)PCA:构建股票市场指数

    library('ggplot2') prices <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\08-PC ...

  8. Machine Learning for hackers读书笔记(五)回归模型:预测网页访问量

    线性回归函数 model<-lm(Weight~Height,data=?) coef(model):得到回归直线的截距 predict(model):预测 residuals(model):残 ...

  9. Machine Learning for hackers读书笔记(四)排序:智能收件箱

    #数据集来源http://spamassassin.apache.org/publiccorpus/ #加载数据 library(tm)library(ggplot2)data.path<-'F ...

随机推荐

  1. UML类图(转载)

    概述: 类图是静态图.它代表了一个应用程序的静态视图.类图不仅用于可视化描述和记录系统的不同方面,但也为构建可执行代码的软件应用程序. 类图描述一类的属性和操作,也对系统的约束.被广泛应用于类图的建模 ...

  2. WPF 与Surface 2.0 SDK 亲密接触 - ScatterView 数据绑定篇

    与我们常用的一些WPF 控件相同,ScatterView 控件也支持数据绑定功能.本篇将演示如何利用ScatterView 绑定Win7 系统中的样例图片,并且每张图片会以独立的ScatterView ...

  3. Codeforces Round #263 (Div. 2)

    吐槽:一辈子要在DIV 2混了. A,B,C都是简单题,看AC人数就知道了. A:如果我们定义数组为N*N的话就不用考虑边界了 #include<iostream> #include &l ...

  4. Linux中yum和apt-get用法及区别

    Linux中yum和apt-get用法及区别   一般来说著名的linux系统基本上分两大类:   1.RedHat系列:Redhat.Centos.Fedora等   2.Debian系列:Debi ...

  5. Pots of gold game:看谁拿的钱多

    问题描述: Pots of gold game: Two players A & B. There are pots of gold arranged in a line, each cont ...

  6. ***iOS开发中@selector的理解与应用

    @selector 是什么? 1一种类型 SEL2代表你要发送的消息(方法), 跟字符串有点像, 也可以互转.: NSSelectorFromString() / NSSelectorFromStri ...

  7. 如何学好oracle?(准备)

    循序渐进 多练习 http://www.tudou.com/listplay/ScoGxMJZGQc/Nw9HE62XiGo.html

  8. @RequestBody 的正确使用办法

    1.以前一直以为在SpringMVC环境中,@RequestBody接收的是一个Json对象,一直在调试代码都没有成功,后来发现,其实 @RequestBody接收的是一个Json对象的字符串,而不是 ...

  9. React状态的含义和用法

    一. 二.代码 <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset=&quo ...

  10. mysql C api

    1.初始化一个链接结构. 2.创建一个链接. 3.执行查询. 4.关闭链接. MYSQL* conn; 首先,声明一个conn指针指向一个MYSQL结构体,这个结构体就是一个数据库连接句柄. conn ...