import time

a = time.time()
print(a)
b = time.localtime()
print(b)
c = time.strftime("%Y-%m-%d %X",time.localtime())
print(c)
d = time.mktime(time.localtime())
print(d)
e = time.strftime("%Y-%m-%d %X",time.localtime(1544103564.0))
print(e)

import datetime
import numpy as np
import pandas as pd

a = pd.date_range(datetime.datetime(2018,1,1),periods=31)
print(a)

import datetime
import numpy as np
import pandas as pd

a = pd.date_range("2018-1-1",periods=31)
print(a)

import datetime
import numpy as np
import pandas as pd

a = pd.date_range("2018-5-1 00:00","2018-5-1 12:00",freq="H")
print(a)

import datetime
import numpy as np
import pandas as pd

ts1 = pd.Series(np.arange(31),index=pd.date_range("2018-1-1",periods=31))
print(ts1.head())
print(ts1["2018-1-3"])
print(ts1.index[3])
a = ts1.index[3].year
b = ts1.index[3].month
c = ts1.index[3].day
print(a,b,c)

import datetime
import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\hz_weather.csv")
print(data.head())
df = data[["日期","最高气温","最低气温"]].set_index("日期")
print(type(df))
print(df.head())
print(df.index[0])
print(df.info())

import datetime
import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\hz_weather.csv")
df = data.set_index("日期")
a = np.array(df.index) < "2017-02-01"
print(a)
b = df[(df.index >= "2017-01-01")&(df.index < "2017-02-01")]
print(b)
print(b.info())

import datetime
import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\hz_weather.csv")
df = data.set_index("日期")
df = data[["日期","最高气温","最低气温"]].set_index("日期")
print(type(df))
print(df.head())
a = df.groupby(level=0).mean()
print(a.head())

%matplotlib inline

import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\hz_weather.csv")
df = data.set_index("日期")
df = data[["日期","最高气温","最低气温"]].set_index("日期")
fig,ax = plt.subplots(1,1,figsize=(12,4))
df.plot(ax=ax)
plt.grid()
# ax.set_xticklabels(df.index.values)
# ax.set_xlabel(df.index.values)
plt.show()

import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\european_cities.csv")
print(np.shape(data))
print(data.head())
print(type(data.Population[0]))

import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\european_cities.csv")
print(data.head())
data["NumericPopulation"] = data.Population.apply(lambda x:int(x.replace(",","")))
print(data.head())

import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\european_cities.csv")
a = data["State"].values[:3]
print(a)

import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\european_cities.csv")
data["State"] = data["State"].apply(lambda x:x.strip())
print(data.head())
print(data.dtypes)

import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\getlinks.csv")
print(data.head())
a = data.link.str.extract("(\d+)")
print(a)
b = data.link.str.extract("(.*)/(\d+)")
print(b)

import numpy as np
import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\pandas data\\getlinks.csv")
print(data.head())
b = data.link.str.extract("(?P<URL>.*)/(?P<ID>\d+)")
print(b)

吴裕雄 python 数据处理(3)的更多相关文章

  1. 吴裕雄 python 数据处理(2)

    import pandas as pd data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz ...

  2. 吴裕雄 python 数据处理(1)

    import time print(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d %X',time.localtim ...

  3. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

  4. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  5. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python 神经网络——TensorFlow pb文件保存方法

    import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...

  7. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

随机推荐

  1. 网络基础和python

    ·五层协议 物理层,数据链路层,网络层,传输层,应用层 ·用户上网流程 1.本机获取 2.打开浏览器,,输入网址. 3.dns协议(基于udp协议) 4.HTTP部分的内容 5 TCP协议 6 IP协 ...

  2. js中的substring

    "ABCDEFG".substring(2,3) 结果为"C"

  3. 马哥Linux base学习笔记

     介绍课程: 中级: 初级:系统基础 中级:系统管理.服务安全及服务管理.shell脚本 高级: MySQL数据库: Cache & storgae 集群: Cluster   lb: 4la ...

  4. 使用Handlerf发送消息或使用Handler轮询时,报错IllegalStateException:This message is already in use.;

    java.lang.IllegalStateException: { when=-107ms what=9 obj=com.saicmaxus.maxuslife.model.CarInfo@be47 ...

  5. 基于Linux命令行KVM虚拟机的安装配置与基本使用

    背景 由于生产环境的服务器并不会安装桌面环境,简单操作的图形化安装也不适合批量部署安装.因此,我还是更倾向于在命令下安装配置KVM虚拟机.结合了一些资料和个人使用的状况,我大致列出了一些基本和常用的使 ...

  6. centos7 jdk

    查看已经自带的jdk: rpm -qa | grep jdk 卸载 sudo yum remove XXX   1.下载 jdk-8u101-linux-x64.rpm http://www.orac ...

  7. 聊聊 cursor鼠标样式

    在前端开发中,很多时候需要对页面的某些元素做鼠标样式的处理,比如button一般用pointer , 文本区一般用text......等等. 今天咱就来聊聊 这个经常用到的 cursor 属性 cur ...

  8. MySQL死锁问题分析及解决方法实例详解(转)

      出处:http://www.jb51.net/article/51508.htm MySQL死锁问题是很多程序员在项目开发中常遇到的问题,现就MySQL死锁及解决方法详解如下: 1.MySQL常用 ...

  9. oracle 表或视图不存在

    导入导出时,会自动表名自动加上了““双引号需要将表名改一下就可以了 alter table "oldtablename" rename to newtableName;

  10. try or install Ubuntu on MeegoPad T01

    Ref: Install Ubuntu on Meego Pad T01 with a Live ISO Image MeegoPad T01 has recently been shown to b ...