【bzoj2961】共点圆 k-d树
更新:此题我的代码设置eps=1e-8会WA,现在改为1e-9貌似T了
此题网上的大部分做法是cdq分治+凸包,然而我觉得太烦了,于是自己口胡了一个k-d树做法:
加入一个圆$(x,y)$,直接在k-d树上加入这个点即可,注意要打rebuild否则会T。
查询一个点$(x_0,y_0)$是否在所有的圆上时:
我们设当前需要判断一个圆$(x,y)$是否覆盖该点,通过简单的分析,可以列出以下式子:
$(x-x_0)^2+(y-y_0)^2≤x_0^2+y_0^2$
我们不妨设$y_0>0$通过简单变式和移项,我们可以得到:
$y \geq -\frac{x_0}{y_0}x+\frac{x_0^2+y_0^2}{2y}$
我们将$ -\frac{x_0}{y_0} $和$ \frac{x_0^2+y_0^2}{2y} $视作常数,得到$y≤kx+b$,这是啥?一个半平面啊!!
问题即转化为了当前k-d树中是否所有点均在该半平面内,直接在k-d树中查询即可(实际上还需要有点思考量的分类讨论)
对于$y_0<0$的情况,部分符号需做些许更改。对于$y_0=0$的情况,需要特殊讨论!!(大概是$x<\frac{x_0}{2}$)
然后就没啦,时间复杂度$O(n log n+n^{1.5})$
PS:千万要记得打y=0的情况(我就被这个卡了很久)
#include<bits/stdc++.h>
#define M 500000
#define eps 1e-9
#define INF 1e20
using namespace std; #define MFLONG 13000000
#define NUM(x) ((48<=x&&x<=57)||x=='-')
char _c[MFLONG],_w[MFLONG]={};int _ns=,_nw=;int _x[],_ld;
inline void rd(int &_q){int _fu;if(_c[_ns]==) return;while(!NUM(_c[_ns])) _ns++;if(_c[_ns]=='-') _fu=-,_ns++;else _fu=;_q=;while(NUM(_c[_ns])) _q=_q*+_c[_ns++]-;_q=_fu*_q;}
inline void rd(double &X)
{
double x=,f=;
for (;_c[_ns]<''||_c[_ns]>'';_ns++) if (_c[_ns]=='-') f=-;
for (;_c[_ns]>=''&&_c[_ns]<='';_ns++) x=x*+_c[_ns]-'';
if (_c[_ns]!='.') {X=x*f;return;} _ns++;
for (double hh=0.1;_c[_ns]>=''&&_c[_ns]<='';_ns++,hh=hh/) x+=(_c[_ns]-'')*hh;
X=x*f;
} int D;
struct node{
double max[],min[],a[];
int l,r,siz;
node(){
max[]=max[]=a[]=a[]=l=r=siz=;
min[]=min[]=INF;
}
void clear(){
max[]=max[]=a[]=a[]=l=r=siz=;
min[]=min[]=INF;
}
node(double x,double y){
max[]=max[]=l=r=siz=;
min[]=min[]=INF;
a[]=x; a[]=y;
}
friend bool operator <(node a,node b){return a.a[D]<b.a[D];}
}a[M]; int root=,use=,reb=,rebfa=,rebd=; void insert(int &x,int fa,int d,node k){
if(!x){x=++use; a[x]=k;}
else{
if(k.a[d]<a[x].a[d]) insert(a[x].l,x,d^,k);
else insert(a[x].r,x,d^,k);
}
a[x].siz++;
a[x].max[]=max(a[x].max[],k.a[]); a[x].min[]=min(a[x].min[],k.a[]);
a[x].max[]=max(a[x].max[],k.a[]); a[x].min[]=min(a[x].min[],k.a[]);
if(max(a[a[x].l].siz,a[a[x].r].siz)>a[x].siz*0.77) reb=x,rebfa=fa,rebd=d;
} int id[M]={},cnt=;
bool cmp(int x,int y){return a[x]<a[y];}
void bl(int x){if(!x) return;id[++cnt]=x;bl(a[x].l); bl(a[x].r);}
void rebuild(int &x,int l,int r,int d){
if(l>r) {x=; return;}
int mid=(l+r)>>; D=d;
nth_element(id+l,id+mid,id+r+,cmp); x=id[mid];
a[x].max[]=a[x].min[]=a[x].a[];
a[x].max[]=a[x].min[]=a[x].a[];
rebuild(a[x].l,l,mid-,d^); rebuild(a[x].r,mid+,r,d^);
a[x].siz=a[a[x].l].siz+a[a[x].r].siz+;
for(int i=;i<;i++)
a[x].max[i]=max(a[x].max[i],max(a[a[x].l].max[i],a[a[x].r].max[i])),
a[x].min[i]=min(a[x].min[i],min(a[a[x].l].min[i],a[a[x].r].min[i]));
}
void rebuild(){
if(!reb) return;
bl(reb);
if(!rebfa) rebuild(root,,cnt,rebd);
else{
if(a[rebfa].l==reb) rebuild(a[rebfa].l,,cnt,rebd);
else rebuild(a[rebfa].r,,cnt,rebd);
}
cnt=reb=rebfa=;
} bool queryl(int x,double k,double b){
if(!x) return ;
if(k>&&a[x].max[]*k+b<a[x].min[]-eps) return ;
if(k>&&a[x].min[]*k+b>=a[x].max[]) return ;
if(k>&&a[x].a[]*k+b<a[x].a[]+eps) return ; if(k<=&&a[x].max[]*k+b>=a[x].max[]-eps) return ;
if(k<=&&a[x].min[]*k+b<a[x].min[]) return ;
if(k<=&&!(a[x].a[]*k+b>a[x].a[]-eps)) return ; return queryl(a[x].l,k,b)&queryl(a[x].r,k,b);
} bool queryr(int x,double k,double b){
if(!x) return ;
if(k>&&a[x].max[]*k+b<a[x].min[]) return ;
if(k>&&a[x].min[]*k+b>a[x].max[]-eps) return ;
if(k>&&a[x].a[]*k+b>a[x].a[]-eps) return ; if(k<=&&a[x].max[]*k+b>a[x].max[]) return ;
if(k<=&&a[x].min[]*k+b<a[x].min[]+eps) return ;
if(k<=&&!(a[x].a[]*k+b<a[x].a[]+eps)) return ; return queryr(a[x].l,k,b)&queryr(a[x].r,k,b);
} bool queryx(int x,int k,double l){
if(!x) return ;
if(k>&&l<=a[x].min[]+eps) return ;
if(k>&&l>a[x].max[]-eps) return ;
if(k>&&l>a[x].a[]-eps) return ; if(k<&&a[x].max[]-eps<=l) return ;
if(k<&&l<a[x].min[]+eps) return ;
if(k<&&l>a[x].a[]) return ; return queryx(a[x].l,k,l)&queryx(a[x].r,k,l);
} int main(){
//fread(_c,1,MFLONG,stdin);
int n; //rd(n);
scanf("%d",&n);
while(n--){
int op; double x,y;
//rd(op);rd(x);rd(y);
scanf("%d%lf%lf",&op,&x,&y);
if(op==){
insert(root,,,node(x,y));
rebuild();
}else{
if(fabs(y)<=eps&&fabs(x)<=eps){
printf("Yes\n");
continue;
}
if(fabs(y)<eps){
bool ck=queryx(root,(x>?:-),(x*x)/x/.);
if(ck&&use) puts("Yes"); else puts("No");
continue;
}
bool ck; double k,b;
b=(x*x+y*y)/(*y); k=-x/y;
if(y<) ck=queryl(root,k,b);
else ck=queryr(root,k,b);
if(ck&&use) puts("Yes"); else puts("No");
}
}
}
【bzoj2961】共点圆 k-d树的更多相关文章
- BZOJ2961 共点圆[CDQ分治]
题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...
- bzoj2961 共点圆 (CDQ分治, 凸包)
/* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...
- BZOJ2961: 共点圆(CDQ分治+凸包)
题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...
- [BZOJ2961] 共点圆 [cdq分治+凸包]
题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...
- BZOJ2961: 共点圆
好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...
- bzoj2961 共点圆 bzoj 4140
题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...
- [BZOJ2961]共点圆-[凸包+cdq分治]
Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...
- 【BZOJ2961】共点圆(CDQ分治)
[BZOJ2961]共点圆(CDQ分治) 题面 BZOJ 题解 设询问点\((x,y)\),圆心是\((X,Y)\) 那么如果点在园内的话就需要满足 \((X-x)^2+(Y-y)^2\le X^2+ ...
- 【BZOJ4140】共点圆加强版(二进制分组)
[BZOJ4140]共点圆加强版(二进制分组) 题面 BZOJ 题解 我卡精度卡了一天.... 之前不强制在线的做法是\(CDQ\)分治,维护一个凸壳就好了. 现在改成二进制分组,每次重建凸壳就好了. ...
- HDU 2157 How many ways??:矩阵快速幂【i到j共经过k个节点的方法数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157 题解: 给你一个有向图,n个节点m条边,问你从i到j共经过k个节点的方法数(不算i点). 题解: ...
随机推荐
- 20155333 2016-2017-2 《Java程序设计》第五周学习总结
20155333 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 1.使用try.catch语法 与C语言中程序流程和错误处理混在一起不同,Java中把正常流 ...
- jquery统计显示或隐藏的元素个数
统计显示的checkbox的数量: 统计隐藏的checkbox数量:
- 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)
传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...
- HDU 2561 第二小整数 (排序)
题意:中文题. 析:输入后,排一下序就好. 代码如下: #include <iostream> #include <cstdio> #include <algorithm ...
- Spring3.x错误---- Cannot proxy target class because CGLIB2 is not available. Add CGLIB to the class path or specify proxy interfaces.
Spring3.x错误: 解决方法: 缺少cglib的包, 下载地址: http://sourceforge.net/projects/cglib/files/latest/download?sour ...
- python编码(五)
说说区位码.GB2312.内码和代码页 目前Windows的内核已经采用Unicode编码,这样在内核上可以支持全世界所有的语言文字.但是由于现有的大量程序和文档都采用了某种特定语言的编码,例如GBK ...
- struts2从浅至深(四)下载文件
1.创建下载文件动作类 2.配置struts 3.提供一个下载链接 4.下载页面 为什么文件名是链接名 只是以链接名显示,但文件的本身是个图片秩序改掉后缀名就可以了
- OpenGl 坐标转换 (转载)
OpenGl 坐标转换 (转载) 1. OpenGL 渲染管线 OpenGL渲染管线分为两大部分,模型观测变换(ModelView Transformation)和投影变换(Projection Tr ...
- hdu 5064 满足b2−b1≤b3−b2... 的最长子序列
http://acm.hdu.edu.cn/showproblem.php?pid=5064 要找出一个数组中满足b2−b1≤b3−b2≤⋯≤bt−bt−1 的最大的t 直接引题解: 1003 Fin ...
- 对SpringDAO层支持的总结
1.问题 1.JDBC/ORM框架(如Hibernate)开发中编程模型有哪些缺点? 如JDBC 2.解决方案(模板设计模式,本质:将可变的和不可变的分离) 模板方法模式:定义操作的步骤(固定的 ...