51nod 1265 四点共面——计算几何
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1265
以其中某一点向其它三点连向量,若四点共面,这三个向量定义的平行六面体的体积为零。
而这个体积等于这三个向量的混合积,所以只要验证混合积是否为零。
|ax ay az|
而混合积(a,b,c)=(a×b)·c= |bx by bz|
|cx cy cz|
证明也不难:https://baike.baidu.com/item/%E6%B7%B7%E5%90%88%E7%A7%AF/10564182?fr=kg_general
所以只需验证ax*by*cz+ay*bz*cx+bx*cy*az-az*by*cx-ay*bx*cz-ax*bz*cy的值即可。
再提一句:空间向量a、b的叉积:a×b=(ax,ay,az)×(bx,by,bz)=(ay*bz-az*by , az*bx-ax*bz , ax*by-ay*bx)
#include<cstdio>
using namespace std;
struct Point{ int x,y,z; }p[];
int main(){
int t;
int x,y,z;
int ax,ay,az,bx,by,bz,cx,cy,cz;
scanf("%d", &t);
for(int k = ; k <= t; ++k){
scanf("%d%d%d",&x,&y,&z);//第一个点坐标
for(int i = ; i < ; ++i)//后三个点坐标
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
///构建向量
ax=p[].x-x; ay=p[].y-y; az=p[].z-z;
bx=p[].x-x; by=p[].y-y; bz=p[].z-z;
cx=p[].x-x; cy=p[].y-y; cz=p[].z-z;
///混合积
if(ax*by*cz+ay*bz*cx+bx*cy*az-az*by*cx-ay*bx*cz-ax*bz*cy == )
puts("Yes");
else puts("No");
}
return ;
}
51nod 1265 四点共面——计算几何的更多相关文章
- 51Nod 1265 四点共面(计算几何)
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面). ...
- 51nod 1265 四点共面【计算几何+线性代数】
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...
- 51Nod:1265 四点共面
计算几何 修改隐藏话题 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点 ...
- 51nod1265 四点共面
题目链接:51nod 1265 四点共面 四个点构成的三个向量a,b,c共面的充要条件是存在不全为零的实数x,y,z满足x*a+y*b+z*c=0,然后想到线代了.. 其实就是三个向量的混合积为0:( ...
- 51Nod-1265 四点共面
51Nod 1265 : http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1265 1265 四点共面 基准时间限制:1 秒 ...
- 51nod1265四点共面
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如 ...
- (四点共面) 51nod1265 四点共面
1265 四点共面 1 秒 131,072 KB 0 分 基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如果共面,输出"Ye ...
- 51nod--1265 四点共面 (计算几何基础, 点积, 叉积)
题目: 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4 ...
- 51nod1265判断四点共面
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...
随机推荐
- iOS 7:漫谈#define 宏定义
#define宏定义在C系开发中可以说占有举足轻重的作用.底层框架自不必说,为了编译优化和方便,以及跨平台能力,宏被大量使用,可以说底层开发离开define将寸步难行.而在更高层级进行开 ...
- JPA_day01
- iOS蓝牙架构搭建-2
蓝牙架构的搭建 前言:笔者认为,如果只是单纯的传授大家代码怎么敲,那么大家很有可能在实际开发中难以运用.刚好本人曾经参与过多款智能硬件开发的架构搭建,本小节本人就现场带领大家开发出一个通用的蓝牙工具类 ...
- EM算法(徐亦达)笔记
- HDU-1029-Ignatius aned the Princess IV
链接:https://vjudge.net/problem/HDU-1029#author=0 题意: 给你n个数字,请你找出出现至少(n+1)/2次的数字. 思路: dp,hash超时了,不知道是不 ...
- typedef与复杂声明
参考 [1] http://www.cnblogs.com/bakari/archive/2012/08/28/2659889.html [2]<C专家编程> [3 ]http://www ...
- 阿里云-域名免费申请ssl证书过程
1.运行证书服务docker docker run --entrypoint="/bin/sh" -it --name certbotsh certbot/certbot:late ...
- appium环境搭建思路
1.appium环境是不是需要appium的一个安装包? 2.我们针对android进行测试我们是不是需要android本身的一个android 的sdk? 3.android这个本身就是java基础 ...
- Jquery EasyUI 中ValidateBox验证框使用讲解(转)
Validatebox(验证框)的设计目的是为了验证输入的表单字段是否有效.如果用户输入了无效的值,它将会更改输入框的背景颜色,并且显示警告图标和提示信息.该验证框可以结合form(表单)插件并防止表 ...
- log4j日志工具类
/** * log4j日志Util */public class LogUtil { private static Logger logger=null; static{ StackTraceElem ...