51nod 1265 四点共面——计算几何
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1265
以其中某一点向其它三点连向量,若四点共面,这三个向量定义的平行六面体的体积为零。
而这个体积等于这三个向量的混合积,所以只要验证混合积是否为零。
|ax ay az|
而混合积(a,b,c)=(a×b)·c= |bx by bz|
|cx cy cz|
证明也不难:https://baike.baidu.com/item/%E6%B7%B7%E5%90%88%E7%A7%AF/10564182?fr=kg_general
所以只需验证ax*by*cz+ay*bz*cx+bx*cy*az-az*by*cx-ay*bx*cz-ax*bz*cy的值即可。
再提一句:空间向量a、b的叉积:a×b=(ax,ay,az)×(bx,by,bz)=(ay*bz-az*by , az*bx-ax*bz , ax*by-ay*bx)
#include<cstdio>
using namespace std;
struct Point{ int x,y,z; }p[];
int main(){
int t;
int x,y,z;
int ax,ay,az,bx,by,bz,cx,cy,cz;
scanf("%d", &t);
for(int k = ; k <= t; ++k){
scanf("%d%d%d",&x,&y,&z);//第一个点坐标
for(int i = ; i < ; ++i)//后三个点坐标
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
///构建向量
ax=p[].x-x; ay=p[].y-y; az=p[].z-z;
bx=p[].x-x; by=p[].y-y; bz=p[].z-z;
cx=p[].x-x; cy=p[].y-y; cz=p[].z-z;
///混合积
if(ax*by*cz+ay*bz*cx+bx*cy*az-az*by*cx-ay*bx*cz-ax*bz*cy == )
puts("Yes");
else puts("No");
}
return ;
}
51nod 1265 四点共面——计算几何的更多相关文章
- 51Nod 1265 四点共面(计算几何)
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面). ...
- 51nod 1265 四点共面【计算几何+线性代数】
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...
- 51Nod:1265 四点共面
计算几何 修改隐藏话题 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点 ...
- 51nod1265 四点共面
题目链接:51nod 1265 四点共面 四个点构成的三个向量a,b,c共面的充要条件是存在不全为零的实数x,y,z满足x*a+y*b+z*c=0,然后想到线代了.. 其实就是三个向量的混合积为0:( ...
- 51Nod-1265 四点共面
51Nod 1265 : http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1265 1265 四点共面 基准时间限制:1 秒 ...
- 51nod1265四点共面
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如 ...
- (四点共面) 51nod1265 四点共面
1265 四点共面 1 秒 131,072 KB 0 分 基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如果共面,输出"Ye ...
- 51nod--1265 四点共面 (计算几何基础, 点积, 叉积)
题目: 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4 ...
- 51nod1265判断四点共面
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...
随机推荐
- hoj2798 Globulous Gumdrops
Globulous Gumdrops My Tags (Edit) Source : 2008 Stanford Programming Contest Time limit : 1 se ...
- IT兄弟连 JavaWeb教程 JSP经典案例
案例需求:定义一个javaBean叫XdlUser,有四个字段int id.String name.int age.double salary.写一个jsp页面,在页面中构建一个列表对象,里面存放几个 ...
- IT兄弟连 JavaWeb教程 Servlet会话跟踪 Cookie技术原理
Cookie使用HTTPHeader传递数据.Cookie机制定义了两种报头,Set-Cookie报头和Cookie报头.Set-Cookie报头包含于Web服务器的响应头(ResponseHeade ...
- Windows下完全卸载node.js并安装node.js的多版本管理工具nvm-windows
前言 由于高版本的node.js导致gulp执行build命令失败,我需要在Windows下卸载掉已有的node.js并安装一个多版本管理工具nvm-windows,方便切换不同版本的node.js. ...
- nginx 设置websocket支持
#websocket======相关 proxy_read_timeout 60m; proxy_http_version 1.1; proxy_set_header Upgrade $http_up ...
- bootstrapValidator 常用的验证
$("#表单ID").bootstrapValidator({ message: 'This value is not valid', excluded: [':disabled' ...
- 可视化-grafana_使用influxDB数据
1 添加数据源 给数据源取个名字,然后选择数据类型为influxDB. HTTP:8086是influxDB的HTTP查询API,grafana是通过这个接口获取数据. Details:选择从infl ...
- Codeforces Round #402 (Div. 2) A
Description In Berland each high school student is characterized by academic performance — integer v ...
- c#学习系列之静态类,静态构造函数,静态成员,静态方法(总之各种静态)
<1>静态类: 静态类与非静态类的重要区别在于静态类不能实例化,也就是说,不能使用 new 关键字创建静态类类型的变量.静态类最大的特点就是共享.在声明一个类时使用static关键字,具有 ...
- 剑指 Offer
3.1 找出数组中重复的数 来源:AcWing 题目描述 给定一个长度为 n 的整数数组 nums,数组中所有的数字都在 0∼n−1 的范围内. 数组中某些数字是重复的,但不知道有几个数字重复了,也不 ...