import  numpy as np
from sklearn.model_selection import train_test_split,KFold,StratifiedKFold,LeaveOneOut,cross_val_score #模型选择数据集切分train_test_split模型
def test_train_test_split():
X=[[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74]]
y=[1,1,0,0,1,1,0,0]
# 切分,测试集大小为原始数据集大小的 40%
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.4, random_state=0)
print("X_train=",X_train)
print("X_test=",X_test)
print("y_train=",y_train)
print("y_test=",y_test)
# 分层采样切分,测试集大小为原始数据集大小的 40%
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.4,random_state=0,stratify=y)
print("Stratify:X_train=",X_train)
print("Stratify:X_test=",X_test)
print("Stratify:y_train=",y_train)
print("Stratify:y_test=",y_test) test_train_test_split()

#模型选择数据集切分KFold模型
def test_KFold():
X=np.array([[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74],
[81,82,83,84]])
y=np.array([1,1,0,0,1,1,0,0,1])
# 切分之前不混洗数据集
folder=KFold(n_splits=3,random_state=0,shuffle=False)
for train_index,test_index in folder.split(X,y):
print("Train Index:",train_index)
print("Test Index:",test_index)
print("X_train:",X[train_index])
print("X_test:",X[test_index])
print("")
# 切分之前混洗数据集
shuffle_folder=KFold(n_splits=3,random_state=0,shuffle=True)
for train_index,test_index in shuffle_folder.split(X,y):
print("Shuffled Train Index:",train_index)
print("Shuffled Test Index:",test_index)
print("Shuffled X_train:",X[train_index])
print("Shuffled X_test:",X[test_index])
print("") test_KFold()

#模型选择数据集切分StratifiedKFold模型
def test_StratifiedKFold():
X=np.array([[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74]]) y=np.array([1,1,0,0,1,1,0,0]) folder=KFold(n_splits=4,random_state=0,shuffle=False)
stratified_folder=StratifiedKFold(n_splits=4,random_state=0,shuffle=False)
for train_index,test_index in folder.split(X,y):
print("Train Index:",train_index)
print("Test Index:",test_index)
print("y_train:",y[train_index])
print("y_test:",y[test_index])
print("") for train_index,test_index in stratified_folder.split(X,y):
print("Stratified Train Index:",train_index)
print("Stratified Test Index:",test_index)
print("Stratified y_train:",y[train_index])
print("Stratified y_test:",y[test_index])
print("") test_StratifiedKFold()

#模型选择数据集切分LeaveOneOut模型
def test_LeaveOneOut():
X=np.array([[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34]])
y=np.array([1,1,0,0])
lo=LeaveOneOut()
for train_index,test_index in lo.split(X):
print("Train Index:",train_index)
print("Test Index:",test_index)
print("X_train:",X[train_index])
print("X_test:",X[test_index])
print("") test_LeaveOneOut()

#模型选择数据集切分cross_val_score模型
def test_cross_val_score():
from sklearn.datasets import load_digits
from sklearn.svm import LinearSVC
digits=load_digits() # 加载用于分类问题的数据集
X=digits.data
y=digits.target
# 使用 LinearSVC 作为分类器
result=cross_val_score(LinearSVC(),X,y,cv=10)
print("Cross Val Score is:",result) test_cross_val_score()

吴裕雄 python 机器学习——模型选择数据集切分的更多相关文章

  1. 吴裕雄 python 机器学习——模型选择验证曲线validation_curve模型

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.da ...

  2. 吴裕雄 python 机器学习——模型选择学习曲线learning_curve模型

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.da ...

  3. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

  4. 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...

  5. 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型

    import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...

  6. 吴裕雄 python 机器学习——模型选择参数优化随机搜索寻优RandomizedSearchCV模型

    import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...

  7. 吴裕雄 python 机器学习——模型选择损失函数模型

    from sklearn.metrics import zero_one_loss,log_loss def test_zero_one_loss(): y_true=[1,1,1,1,1,0,0,0 ...

  8. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  9. 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

随机推荐

  1. mysql cmd链接不上数据库情况汇总

    在我的电脑 属性 高级设置 环境变量 path 编辑 添加mysql bin的文件位置复制粘贴上 mysql> use mysqlERROR 1044 (42000): Access denie ...

  2. [HNOI2014] 道路堵塞 - 最短路,线段树

    对不起对不起,辣鸡蒟蒻又来用核弹打蚊子了 完全ignore了题目给出的最短路,手工搞出一个最短路,发现对答案没什么影响 所以干脆转化为经典问题:每次询问删掉一条边后的最短路 如果删掉的是非最短路边,那 ...

  3. linux网卡

    手动启动 ifup eth0 查询网卡配置信息 vim /etc/udev/rules.d/70-persistent-net.rules 备注:可以修改网卡名称和MAC地址

  4. 11g RAC添加用户表空间(数据文件)至文件系统(File System)的修正

    前提:非TEMP.UNDO和SYSTEM表空间,这仨是大爷,您得搂着点.来自博客园AskScuti .客户是添加临时表空间数据文件时,不小心 ADD 到了文件系统中,然后发现,后悔了,还在OS层面 R ...

  5. 跨站跟踪攻击(CST/XST)

    XSS与httponly 正常情况下,客户端脚本(如JS脚本)是可以通过document.cookie函数获得,这样如果有XSS跨站漏洞,cookie很容易被盗取.浏览器有一个安全策略,通过设置coo ...

  6. python3练习100题——012

    今天继续,答案都通过py3测试. 原题链接:http://www.runoob.com/python/python-exercise-example12.html 题目:判断101-200之间有多少个 ...

  7. 深度学习之numpy.poly1d()函数

    1.np.poly1d()此函数有两个参数: 参数1:为一个数组,若没有参数2,则生成一个多项式,例如: p = np.poly1d([2,3,5,7]) print(p)    ==>> ...

  8. OpenCV的视频读取

    现在找一个能拍摄视频的设备真是太容易了.结果大家都用视频来代替以前的序列图像.视频可能由两种形式得到,一个是像网络摄像头那样实时视频流,或者由其他设备产生的压缩编码后的视频文件.幸运的是,OpenCV ...

  9. 箭头函数 与 forEach

    array.forEach(function(item,index){ }.bind(this)); 同 array.forEach((item,index) =>{ });

  10. 2.10 webdriver中 js 使用

    来源: 使用Webdriver执行JS小结  http://lijingshou.iteye.com/blog/2018929 selenium常用的js总结  http://www.cnblogs. ...