【初等数论】费马小定理&欧拉定理&扩展欧拉定理(暂不含证明)
(不会证明……以后再说)
费马小定理
对于任意\(a,p \in N_+\),有
\(a^{p-1} \equiv 1\pmod {p}\)
推论:
\(a^{-1} \equiv a^{p-2} \pmod{p}\)
即\(a^{p-2}\)为\(a\)模\(p\)意义下的乘法逆元。
欧拉定理
对于\(a,p \in N^*\)且\(a \perp p\),有\(a^{\varphi (p)} \equiv 1 \pmod {p}\),其中\(\perp\)表示互质。
其中\(\varphi (p)\)表示\(p\)对应的欧拉函数值。
推论1:\(a^{-1} \equiv a^{\varphi(p) - 1} \pmod{p}\)
由欧拉函数性质,当\(p\)是质数时:\(\varphi(p) = p-1\)
可见,费马小定理是\(p\)为质数时欧拉定理的特殊情况。
推论2:\(a^ b \equiv a^{b \bmod \varphi(p)} \pmod{p}\)
可用于答案含大指数时对给定质数取模。
扩展欧拉定理
对于任意\(a,p \in N^*\),有
\left\{
\begin{aligned}
a^b \qquad \qquad \ \ \ (b < \varphi(p)) \\
a^{(b \bmod \varphi(p)) + \varphi(p)}(b \ge\varphi(p)) \\
\end{aligned}
\right.
\end{equation*}\pmod{p}\]
这是在任意模数下对大指数取模的原理。
【初等数论】费马小定理&欧拉定理&扩展欧拉定理(暂不含证明)的更多相关文章
- 学习:费马小定理 & 欧拉定理
费马小定理 描述 若\(p\)为素数,\(a\in Z\),则有\(a^p\equiv a\pmod p\).如果\(p\nmid a\),则有\(a^{p-1}\equiv 1\pmod p\). ...
- 费马小定理&欧拉定理
在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...
- 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
- HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法
题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)
Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...
- 简记乘法逆元(费马小定理+扩展Euclid)
乘法逆元 什么是乘法逆元? 若整数 \(b,m\) 互质,并且\(b|a\) ,则存在一个整数\(x\) ,使得 \(\frac{a}{b}\equiv ax\mod m\) . 称\(x\) 是\( ...
- hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925
首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求 ...
随机推荐
- Percona Toolkit工具连接MySQL 8报错的解决方案
使用Percona Toolkit的工具连接MySQL 8.x数据库时,会遇到类似"failed: Plugin caching_sha2_password could not be loa ...
- 签到功能,用 MySQL 还是 Redis ?
现在的网站和app开发中,签到是一个很常见的功能,如微博签到送积分,签到排行榜. 如移动app ,签到送流量等活动. 用户签到是提高用户粘性的有效手段,用的好能事半功倍! 下面我们从技术方面看看常 ...
- git 上传代码报错eslint --fix found some errors. Please fix them and try committing again.
在提交时用下面这句 git commit --no-verify -m "提交时的注释"
- Java学习的第三十天
1.遇到打印文件使用打印流PrintStream 使用PrintStream写入数据 2.没有问题 3.明天学习用RandomAccessFile随机访问文件
- win10安装linux子系统(wsl)
win10安装linux子系统(wsl) 1.打开Microsoft Store 方式一:在电脑左下角打开 方式二:在电脑左下角的搜索里里输入Microsoft Store 打开Microsoft S ...
- 【Jmeter】第一个接口测试案例
测试步骤如下: 1.测试计划 2.线程组 3.HTTP Cookie管理器 4.Http信息头管理 5.Http请求默认值 6.Sampler(HTTP请求) 7.断言 8.监听器(查看结果树.图形结 ...
- vscode 插件配置指北
Extension Manifest 就像 chrome 插件使用 manifest.json 来管理插件的配置一样,vscode 的插件也有一个 manifest,而且就叫 package.json ...
- visual c++6.0使用VA注意事项
visual c++6.0使用VA时配置: (1)因为VA安装时会自动检索MSDEV.exe:如果V6安装在XP或者win7系统上,直接安装,添加addin即可: (2)但是如果安装在win8上,V6 ...
- VSCcode中使用git
1.配置 文件 -> 首选项 -> 配置 出现json格式的配置项,左侧为默认设置,右侧为自定义设置: 加一行: "git.path": Git目录下cmd下的git ...
- WEB系统防退出账户,回退主页问题(2020最新最有效的方式没有之一)
WEB系统防退出账户,回退主页问题(2020最新最有效的方式没有之一) 很多小伙伴在web开发中都遇倒的问题? JavaWeb项目注销后,可能存在通过浏览器缓存回退的方式进入主页系统 WEB项目 ...