【初等数论】费马小定理&欧拉定理&扩展欧拉定理(暂不含证明)
(不会证明……以后再说)
费马小定理
对于任意\(a,p \in N_+\),有
\(a^{p-1} \equiv 1\pmod {p}\)
推论:
\(a^{-1} \equiv a^{p-2} \pmod{p}\)
即\(a^{p-2}\)为\(a\)模\(p\)意义下的乘法逆元。
欧拉定理
对于\(a,p \in N^*\)且\(a \perp p\),有\(a^{\varphi (p)} \equiv 1 \pmod {p}\),其中\(\perp\)表示互质。
其中\(\varphi (p)\)表示\(p\)对应的欧拉函数值。
推论1:\(a^{-1} \equiv a^{\varphi(p) - 1} \pmod{p}\)
由欧拉函数性质,当\(p\)是质数时:\(\varphi(p) = p-1\)
可见,费马小定理是\(p\)为质数时欧拉定理的特殊情况。
推论2:\(a^ b \equiv a^{b \bmod \varphi(p)} \pmod{p}\)
可用于答案含大指数时对给定质数取模。
扩展欧拉定理
对于任意\(a,p \in N^*\),有
\left\{
\begin{aligned}
a^b \qquad \qquad \ \ \ (b < \varphi(p)) \\
a^{(b \bmod \varphi(p)) + \varphi(p)}(b \ge\varphi(p)) \\
\end{aligned}
\right.
\end{equation*}\pmod{p}\]
这是在任意模数下对大指数取模的原理。
【初等数论】费马小定理&欧拉定理&扩展欧拉定理(暂不含证明)的更多相关文章
- 学习:费马小定理 & 欧拉定理
费马小定理 描述 若\(p\)为素数,\(a\in Z\),则有\(a^p\equiv a\pmod p\).如果\(p\nmid a\),则有\(a^{p-1}\equiv 1\pmod p\). ...
- 费马小定理&欧拉定理
在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...
- 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
- HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法
题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)
Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...
- 简记乘法逆元(费马小定理+扩展Euclid)
乘法逆元 什么是乘法逆元? 若整数 \(b,m\) 互质,并且\(b|a\) ,则存在一个整数\(x\) ,使得 \(\frac{a}{b}\equiv ax\mod m\) . 称\(x\) 是\( ...
- hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925
首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求 ...
随机推荐
- webpack 单独打包指定JS文件
背景 最近接到一个需求,因为不确定打出的前端包所访问的后端IP,需要对项目中IP配置文件单独拿出来,方便运维部署的时候对IP做修改.因此,需要用webpack单独打包指定文件. CommonsChun ...
- Spring入门-------------1
Spring是一个开源框架,为简化企业级应用开发而生,使用Spring可以使简单的JavaBean 实现以前只有EJB才能实现的功能.Spring 是一个IOC和Aop容器框架. 特性: 轻量级:Sp ...
- model基础操作(上)
1.创建表 https://www.cnblogs.com/xiaonq/p/7978409.html 1.1 Meta源信息 from django.db import models c ...
- [Luogu P4178]Tree (点分治+splay)
题面 传送门:https://www.luogu.org/problemnew/show/P4178 Solution 首先,长成这样的题目一定是淀粉质跑不掉了. 考虑到我们不知道K的大小,我们可以开 ...
- IDEA 搭建 Spark 源码 (Ubuntu)
版本:Spark 2.4.3/JDK 1.8/Scala 2.11.0 1.选择Spark版本.压缩包下载. 2.IDEA中左下角Terminal下输入: mvn -DskipTests clean ...
- 2020最常见的200+Java面试题汇总(含答案解析)
前言 2020年快要结束了,很多朋友问题,有没有整理今年的一些面试题,最近抽时间整理了一份Java面试题.或许这份面试题还不足以囊括所有 Java 问题,但有了它,我相信足以应对目前市面上绝大部分的 ...
- NER的数据处理
import os class TransferData: def __init__(self): cur = '/'.join(os.path.abspath(__file__).split('/' ...
- 你还再为下载jar包慢而烦恼吗?Maven配置阿里云镜像
Maven配置阿里云镜像 为什么我们下载jar这么慢 maven默认会从中央仓库下载jar包,这个仓库在国外,而且全世界的人都会从这里下载,所以下载速度肯定是非常慢的. 解决方案使用镜像 什么是镜像? ...
- 【Mycat】Mycat核心开发者带你轻松掌握Mycat路由转发!!
写在前面 熟悉Mycat的小伙伴都知道,Mycat一个很重要的功能就是路由转发,那么,这篇文章就带着大家一起来看看Mycat是如何进行路由转发的,好了,不多说了,我们直接进入主题. 环境准备 软件版本 ...
- 【RabbitMQ-7】RabbitMQ—交换机标识符
死信队列概念 死信队列(Dead Letter Exchange),死信交换器.当业务队列中的消息被拒绝或者过期或者超过队列的最大长度时,消息会被丢弃,但若是配置了死信队列,那么消息可以被重新发布到另 ...