给一个无向图的度序列判定是否可图化,并求方案:

  • 可图化的判定:d1+d2+……dn=0(mod 2)。关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环。
  • 可简单图化的判定Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化。简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况。

这一题把青蛙看成点,邻居关系看成边,可以知道这是简单图(无重边、自环)。因此用Havel定理来判定,并且用上述方法来构造出一个解:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; struct Frog{
int pos,deg;
bool operator<(const Frog &f)const{
return deg>f.deg;
}
}frog[]; int n;
bool ans[][];
bool Havel(){
for(int i=; i<n; ++i){
sort(frog+i,frog+n);
for(int j=; j<=frog[i].deg; ++j){
if(i+j>=n || frog[i+j].deg==) return ;
--frog[i+j].deg;
ans[frog[i].pos][frog[i+j].pos]=ans[frog[i+j].pos][frog[i].pos]=;
}
}
return ;
} int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=; i<n; ++i){
scanf("%d",&frog[i].deg);
frog[i].pos=i;
}
memset(ans,,sizeof(ans));
if(Havel()){
puts("YES");
for(int i=; i<n; ++i){
for(int j=; j<n; ++j){
printf("%d ",ans[i][j]);
}
putchar('\n');
}
}else{
puts("NO");
}
putchar('\n');
}
return ;
}

POJ1659 Frogs' Neighborhood(Havel定理)的更多相关文章

  1. POJ 1659 Frogs' Neighborhood (Havel定理构造图)

    题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...

  2. POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)

    题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...

  3. POJ1659 Frogs' Neighborhood(青蛙的邻居) Havel-Hakimi定理

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 8729   Accepted: 36 ...

  4. POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)

    题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...

  5. poj1659 Frogs' Neighborhood

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10239   Accepted: 4 ...

  6. poj 1659 Frogs' Neighborhood Havel-Hakimi定理 可简单图定理

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存 ...

  7. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  8. POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10545   Accepted: 4 ...

  9. Havel定理 poj1659

    http://blog.csdn.net/xcszbdnl/article/details/14174669 代码风格这里的 Frogs' Neighborhood Time Limit: 5000M ...

随机推荐

  1. 诠释Linux中『一切都是文件』概念和相应的文件类型

    导读 在 Unix 和它衍生的比如 Linux 系统中,一切都可以看做文件.虽然它仅仅只是一个泛泛的概念,但这是事实.如果有不是文件的,那它一定是正运行的进程. 要理解这点,可以举个例子,您的根目录( ...

  2. hMailServer+foxmail配置局域网邮件服务器

    1.下载hMailServer并安装,请参考以下网址 https://www.hmailserver.org 2.安装foxmail,官网如下: http://www.foxmail.com/ 3.配 ...

  3. phpcms某处储存型XSS(demo+本地演示)

    文章转载:http://www.myhack58.com/Article/html/3/7/2016/71726.htm 详细说明: demo+本地演示存在xss漏洞的地方在商务中心的商家资料的我的资 ...

  4. 粒子滤波particle filter和目标跟踪

    粒子滤波用于跟踪,参考:http://www.cnblogs.com/tornadomeet/archive/2012/03/18/2404817.html http://blog.csdn.net/ ...

  5. Python 脚本之获取CPU信息

    #!/usr/bin/env Python from __future__ import print_function from collections import OrderedDict impo ...

  6. HDOJ 1870

    #include<stdio.h> #include<stack> #include<string.h> #include<iostream> usin ...

  7. nginx lua处理图片

    user apache apache; worker_processes 4; worker_rlimit_nofile 100000; #error_log logs/error.log; #err ...

  8. 使用nginx的proxy_cache做网站缓存

    为什么要做web cache,我想大家最主要的是解决流量的压力.随着网站流量的提升,如果只是单台机器既处理静态文件,又处理动态脚本,显然效率很难上升,不能处理日益上涨的流量压力.与此同时某些网站的页面 ...

  9. MySQL关闭过程详解和安全关闭MySQL的方法

    MySQL关闭过程详解和安全关闭MySQL的方法 www.hongkevip.com 时间: -- : 阅读: 整理: 红客VIP 分享到: 红客VIP(http://www.hongkevip.co ...

  10. poj 1664

    http://poj.org/problem?id=1664 题目是中文的,一个递归的题目 把每一次的苹果分为两类 Ⅰ:所以盘子都放一个,然后其他的在随便放: Ⅱ:有一个盘子没有放苹果: 这样下去的话 ...