Logistic回归 python实现
Logistic回归
算法优缺点:
1.计算代价不高,易于理解和实现
2.容易欠拟合,分类精度可能不高
3.适用数据类型:数值型和标称型
算法思想:
- 其实就我的理解来说,logistic回归实际上就是加了个sigmoid函数的线性回归,这个sigmoid函数的好处就在于,将结果归到了0到1这个区间里面了,并且sigmoid(0)=0.5,也就是说里面的线性部分的结果大于零小于零就可以直接计算到了。这里的求解方式是梯度上升法,具体我就不扯了,最推荐的资料还是Ng的视频,那里面的梯度下降就是啦,只不过一个是梯度上升的方向一个是下降的方向,做法什么的都一样。
- 而梯度上升(准确的说叫做“批梯度上升”)的一个缺点就是计算量太大了,每一次迭代都需要把所有的数据算一遍,这样一旦训练集大了之后,那么计算量将非常大,所以这里后面还提出了随机梯度下降,思想就是每次只是根据一个data进行修正。这样得到的最终的结果可能会有所偏差但是速度却提高了很多,而且优化之后的偏差还是很小的。随机梯度上升的另一个好处是这是一个在线算法,可以根据新数据的到来不断处理
函数:
loadDataSet()
创建数据集,这里的数据集就是在一个文件中,这里面有三行,分别是两个特征和一个标签,但是我们在读出的时候还加了X0这个属性sigmoid(inX)
sigmoid函数的计算,这个函数长这样的,基本坐标大点就和阶跃函数很像了
gradAscend(dataMatIn, classLabels)
梯度上升算法的实现,里面用到了numpy的数组,并且设定了迭代次数500次,然后为了计算速度都采取了矩阵计算,计算的过程中的公式大概是:w= w+alpha*(y-h)x[i](一直懒得写公式,见谅。。。)gradAscendWithDraw(dataMatIn, classLabels)
上面的函数加强版,增加了一个weight跟着迭代次数的变化曲线stocGradAscent0(dataMatrix, classLabels)
这里为了加快速度用来随机梯度上升,即每次根据一组数据调整(额,好吧,这个际没有随机因为那是线面那个函数)stocGradAscentWithDraw0(dataMatrix, classLabels)
上面的函数加强版,增加了一个weight跟着迭代次数的变化曲线stocGradAscent1(dataMatrix, classLabels, numIter=150)
这就真的开始随机了,随机的主要好处是减少了周期性的波动了。另外这里还加入了alpha的值随迭代变化,这样可以让alpha的值不断的变化,但是都不会减小到0。stocGradAscentWithDraw1(dataMatrix, classLabels, numIter=150)
上面的函数加强版,增加了一个weight跟着迭代次数的变化曲线plotBestFit(wei)
根据计算的weight值画出拟合的线,直观观察效果
迭代变化趋势
分类结果:
迭代变化趋势分类结果:这个速度虽然快了很多但是效果不太理想啊。不过这个计算量那么少,我们如果把这个迭代200次肯定不一样了,效果如下果然好多了
迭代变化趋势分类结果:恩,就是这样啦,效果还是不错的啦。代码的画图部分写的有点烂,见谅啦
#coding=utf-8
from numpy import * def loadDataSet():
dataMat = []
labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat, labelMat def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscend(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m,n = shape(dataMatrix)
alpha = 0.001
maxCycle = 500
weight = ones((n,1))
for k in range(maxCycle):
h = sigmoid(dataMatrix*weight)
error = labelMat - h
weight += alpha * dataMatrix.transpose() * error
#plotBestFit(weight)
return weight def gradAscendWithDraw(dataMatIn, classLabels):
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(311,ylabel='x0')
bx = fig.add_subplot(312,ylabel='x1')
cx = fig.add_subplot(313,ylabel='x2')
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m,n = shape(dataMatrix)
alpha = 0.001
maxCycle = 500
weight = ones((n,1))
wei1 = []
wei2 = []
wei3 = []
for k in range(maxCycle):
h = sigmoid(dataMatrix*weight)
error = labelMat - h
weight += alpha * dataMatrix.transpose() * error
wei1.extend(weight[0])
wei2.extend(weight[1])
wei3.extend(weight[2])
ax.plot(range(maxCycle), wei1)
bx.plot(range(maxCycle), wei2)
cx.plot(range(maxCycle), wei3)
plt.xlabel('iter_num')
plt.show()
return weight def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix) alpha = 0.001
weight = ones(n)
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weight))
error = classLabels[i] - h
weight = weight + alpha * error * dataMatrix[i]
return weight def stocGradAscentWithDraw0(dataMatrix, classLabels):
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(311,ylabel='x0')
bx = fig.add_subplot(312,ylabel='x1')
cx = fig.add_subplot(313,ylabel='x2')
m,n = shape(dataMatrix) alpha = 0.001
weight = ones(n)
wei1 = array([])
wei2 = array([])
wei3 = array([])
numIter = 200
for j in range(numIter):
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weight))
error = classLabels[i] - h
weight = weight + alpha * error * dataMatrix[i]
wei1 =append(wei1, weight[0])
wei2 =append(wei2, weight[1])
wei3 =append(wei3, weight[2])
ax.plot(array(range(m*numIter)), wei1)
bx.plot(array(range(m*numIter)), wei2)
cx.plot(array(range(m*numIter)), wei3)
plt.xlabel('iter_num')
plt.show()
return weight def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix) #alpha = 0.001
weight = ones(n)
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/ (1.0+j+i) +0.01
randIndex = int(random.uniform(0,len(dataIndex)))
h = sigmoid(sum(dataMatrix[randIndex]*weight))
error = classLabels[randIndex] - h
weight = weight + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return weight def stocGradAscentWithDraw1(dataMatrix, classLabels, numIter=150):
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(311,ylabel='x0')
bx = fig.add_subplot(312,ylabel='x1')
cx = fig.add_subplot(313,ylabel='x2')
m,n = shape(dataMatrix) #alpha = 0.001
weight = ones(n)
wei1 = array([])
wei2 = array([])
wei3 = array([])
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/ (1.0+j+i) +0.01
randIndex = int(random.uniform(0,len(dataIndex)))
h = sigmoid(sum(dataMatrix[randIndex]*weight))
error = classLabels[randIndex] - h
weight = weight + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
wei1 =append(wei1, weight[0])
wei2 =append(wei2, weight[1])
wei3 =append(wei3, weight[2])
ax.plot(array(range(len(wei1))), wei1)
bx.plot(array(range(len(wei2))), wei2)
cx.plot(array(range(len(wei2))), wei3)
plt.xlabel('iter_num')
plt.show()
return weight def plotBestFit(wei):
import matplotlib.pyplot as plt
weight = wei
dataMat,labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []
ycord1 = []
xcord2 = []
ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1])
ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1])
ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weight[0] - weight[1]*x)/weight[2]
ax.plot(x,y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show() def main():
dataArr,labelMat = loadDataSet()
#w = gradAscendWithDraw(dataArr,labelMat)
w = stocGradAscentWithDraw0(array(dataArr),labelMat)
plotBestFit(w) if __name__ == '__main__':
main()机器学习笔记索引
Logistic回归 python实现的更多相关文章
- Logistic回归python实现
2017-08-12 Logistic 回归,作为分类器: 分别用了梯度上升,牛顿法来最优化损失函数: # -*- coding: utf-8 -*- ''' function: 实现Logistic ...
- Logistic回归python实现小样例
假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类.Lo ...
- 机器学习实战 logistic回归 python代码
# -*- coding: utf-8 -*- """ Created on Sun Aug 06 15:57:18 2017 @author: mdz "&q ...
- logistic回归 python代码实现
本代码参考自:https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRe ...
- Logistic回归模型和Python实现
回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离 ...
- 【Spark机器学习速成宝典】模型篇02逻辑斯谛回归【Logistic回归】(Python版)
目录 Logistic回归原理 Logistic回归代码(Spark Python) Logistic回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7890468 ...
- 【机器学习速成宝典】模型篇03逻辑斯谛回归【Logistic回归】(Python版)
目录 一元线性回归.多元线性回归.Logistic回归.广义线性回归.非线性回归的关系 什么是极大似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(skl ...
- 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率
,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...
- 吴裕雄--天生自然python机器学习:Logistic回归
假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...
随机推荐
- 5.Android消息推送机制简单例子
1.首先布局文件xml代码: <?xml version="1.0" encoding="utf-8"?> <RelativeLayout x ...
- VMware安装ubuntu虚拟机
创建虚拟机完成. 安装操作系统. 中文版界面: 中文版界面: 稍等在重启 重新启动虚拟机. 安装VMtools 双击该图标 安装完成,重新启动系统. 如果在安装的时候,主机名没有修改 看着太长 如何修 ...
- Palindrome Index
传送门: Palindrome Index Problem Statement You are given a string of lower case letters. Your task is t ...
- xcode配置绝对路径与相对路径
一般我们在xcode里面配置包含工程目录下头文件的时候,都要关联着相对路径和绝对路径,如果只是自己用这个项目,用绝对路径的问题不大,但是如果你把工程发给别人,别人就要在改这个绝对路径,这时候绝对路径 ...
- 如何学习Oracle
如何学习Oracle?分清几个概念是关键 经常有一些Oracle的初学者问到以下几个问题,这里集中解答一下,希望对大家有帮助. 1.如果有一定的数据库基础,知道SQL是怎么回事,即使写不出 ...
- Jquery ui widget开发
Jquery ui 提供了一些基本的widget,但是他提供了很好的机制来创建widget.在jquery css framework中包含了基本的css样式(视觉和感觉诸如颜色,字体大小,图标等), ...
- sqlalchemy默认时间
我查到的sqlalchemy默认时间有2种: from sqlalchemy.sql import func time_created = Column(DateTime(timezone=True) ...
- [Head First设计模式]餐馆中的设计模式——命令模式
系列文章 [Head First设计模式]山西面馆中的设计模式——装饰者模式 [Head First设计模式]山西面馆中的设计模式——观察者模式 [Head First设计模式]山西面馆中的设计模式— ...
- js自动闭合html标签,自动补全html标记
假如我有一个DIV,如果没有闭合后面的样式都会乱了,这样的代码可能会影响后面的样式,我希望用js去自动闭合这种没有闭合的标签: 代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
- css 强制 中文、英文 换行
.livechat-text a { display: block; word-break:break-all; /* 英文换行 */ white-space:normal; /* 中文换行 */ } ...