LDA线性分析推广到多分类
感谢皮果提的文章:
http://blog.csdn.net/itplus/article/details/12038441
http://blog.csdn.net/itplus/article 皮果提是个大牛!
本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料。初步看了看,觉得数学味挺浓,一时引起了很大的兴趣;再看看,就有整理一份资料的冲动了。网上查到的相关文章大都写得不是很详细,而且在概念和记号等方面也比较混乱,因此,在整理本文时,我有意识地牵了一根主线,想让读者读起来有循序渐进的感觉,记号上也力求规范和统一。期间参考了若干文献,以及一些优秀的博客,如 JerryLead、LeftNotEasy、webdancer、xiaodongrush 等的博文,在这里对他们的辛勤写作和无私分享表示感谢。文中的数学推导过程写得比较细,方便有需求的读者参考。此外,文中还通过加注的形式放入了一些自己的理解。 当然由于水平有限,错误遗漏之处在所难免, 希望读者朋友可以指出,也欢迎交流。
目录
第 1 节 预备知识
1.1 分类问题的描述
1.2 拉格朗日乘子法
第 2 节 Two-classes 情形的数学推导
2.1 基本思想
2.2 目标函数
2.3 极值求解
2.4 阀值选取
第 3 节 推广到 Multi-classes 情形
3.1 降维问题的描述
3.2 目标函数与极值求解
3.3 降维幅度
第 4 节 其他几个相关问题
LDA线性分析推广到多分类的更多相关文章
- PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...
- LDA线性判别分析原理及python应用(葡萄酒案例分析)
目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LD ...
- LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...
- LDA线性判别分析
LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的 ...
- 数据降维-LDA线性降维
1.什么是LDA? LDA线性判别分析也是一种经典的降维方法,LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. ...
- LDA 线性判别分析
LDA, Linear Discriminant Analysis,线性判别分析.注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别. 1.引入 上文介绍的PC ...
- R与数据分析旧笔记(六)多元线性分析 下
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题 ...
- 数学建模:2.监督学习--分类分析- KNN最邻近分类算法
1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分 ...
- 各种排序算法的分析及java实现 分类: B10_计算机基础 2015-02-03 20:09 186人阅读 评论(0) 收藏
转载自:http://www.cnblogs.com/liuling/p/2013-7-24-01.html 另可参考:http://gengning938.blog.163.com/blog/sta ...
随机推荐
- uni-app入门学习
什么是 uni-app 1 uni-app 是一个使用 Vue.js 开发跨平台应用的前端框架,开发者编写一套代码,可编译到iOS.Android.H5.小程序等多个平台. 官方的体验例子: 2 un ...
- js入门之数组
数组是一种数据类型,数组可以存储很多项, 有序,集合 Array 定义: var names = ['zs','ls','ww','zl'] 访问: 用索引或/下标 数组可以存储多种类型的数据 但是一 ...
- CSS最常用的三种选择器
标签选择器 样式的名称和标签的名称相同,如示例中的p标签,则对应名称为p的样式,若页面中有多个p标签,则这些p标签共同享用该样式 p{ color:blue; } <p>标签选择器< ...
- flex布局实战
1.实现盒子的水平垂直居中 .parent{ width:200px; height:200px; display:flex; align-items: center; justify-content ...
- YouTube下载方法
复制要下载的视频的地址 打开此链接:https://y2mate.com/youtube/9wxePpNYShQ 如下图位置粘贴视频地址,然后选择想要的分辨率点击右面的“Download”进行下载即可
- LoadRunner生成测试报告
loadrunner笔记(三):设置.运行场景和生成测试报告 //上一篇的代码有点问题,问题出在 web_reg_find()函数中,这个函数简单的说是搜索下一步操作的请求对象(html)页面中 ...
- 标准库类型之string
上几篇中已经实现了一个简单版的String字符串类,但是实际开发中不用我们自己实现了,学习Java的也知道有一个系统现成的用,当然强大的C++也不例外,下面就来学习一下系统定义的string是怎么用的 ...
- P1038 神经网络[拓扑]
题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...
- 原生JS发送Ajax请求、JSONP
一.JS原生Ajax Ajax=异步Javascript+XML: ajax是一种数据请求的方式,不需要刷新整个页面.这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行更新. ajax的核心 ...
- 2019牛客暑期多校训练营(第七场)D Number——实系数多项式因式分解定理
前置知识 代数基本定理 定理:每个次数 ≥ 1 复系数多项式在复数域中至少有一个跟. 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).(只要不断把多项式除以(x-xa),即可 ...