import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_classification():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 digits 数据集
digits=datasets.load_digits()
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) #集成学习AdaBoost算法分类模型
def test_AdaBoostClassifier(*data):
'''
测试 AdaBoostClassifier 的用法,绘制 AdaBoostClassifier 的预测性能随基础分类器数量的影响
'''
X_train,X_test,y_train,y_test=data
clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
clf.fit(X_train,y_train)
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostClassifier")
plt.show() # 获取分类数据
X_train,X_test,y_train,y_test=load_data_classification()
# 调用 test_AdaBoostClassifier
test_AdaBoostClassifier(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_base_classifier(*data):
'''
测试 AdaBoostClassifier 的预测性能随基础分类器数量和基础分类器的类型的影响
'''
from sklearn.naive_bayes import GaussianNB X_train,X_test,y_train,y_test=data
fig=plt.figure()
ax=fig.add_subplot(2,1,1)
########### 默认的个体分类器 #############
clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1)
ax.set_title("AdaBoostClassifier with Decision Tree")
####### Gaussian Naive Bayes 个体分类器 ########
ax=fig.add_subplot(2,1,2)
clf=ensemble.AdaBoostClassifier(learning_rate=0.1,base_estimator=GaussianNB())
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1)
ax.set_title("AdaBoostClassifier with Gaussian Naive Bayes")
plt.show() # 调用 test_AdaBoostClassifier_base_classifier
test_AdaBoostClassifier_base_classifier(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_learning_rate(*data):
'''
测试 AdaBoostClassifier 的预测性能随学习率的影响
'''
X_train,X_test,y_train,y_test=data
learning_rates=np.linspace(0.01,1)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
traing_scores=[]
testing_scores=[]
for learning_rate in learning_rates:
clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,n_estimators=500)
clf.fit(X_train,y_train)
traing_scores.append(clf.score(X_train,y_train))
testing_scores.append(clf.score(X_test,y_test))
ax.plot(learning_rates,traing_scores,label="Traing score")
ax.plot(learning_rates,testing_scores,label="Testing score")
ax.set_xlabel("learning rate")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostClassifier")
plt.show() # 调用 test_AdaBoostClassifier_learning_rate
test_AdaBoostClassifier_learning_rate(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_algorithm(*data):
'''
测试 AdaBoostClassifier 的预测性能随学习率和 algorithm 参数的影响
'''
X_train,X_test,y_train,y_test=data
algorithms=['SAMME.R','SAMME']
fig=plt.figure()
learning_rates=[0.05,0.1,0.5,0.9]
for i,learning_rate in enumerate(learning_rates):
ax=fig.add_subplot(2,2,i+1)
for i ,algorithm in enumerate(algorithms):
clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,algorithm=algorithm)
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="%s:Traing score"%algorithms[i])
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="%s:Testing score"%algorithms[i])
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_title("learing rate:%f"%learning_rate)
fig.suptitle("AdaBoostClassifier")
plt.show() # 调用 test_AdaBoostClassifier_algorithm
test_AdaBoostClassifier_algorithm(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型的更多相关文章

  1. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  2. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  3. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  6. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  7. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  8. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  9. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

随机推荐

  1. c++ STL vector初步学习

    /*vector(向量):是一种顺序容器,,动态数组,事实上和数组差不多,但它比数组更优越.一般来说数组不能动态拓展,因此在程序运行的时候不是浪费内存,就是造成越界.而vector正好弥补了这个缺陷, ...

  2. Ubutu安装oracle jdk1.8

    环境: Ubuntu 18.04 LTS x64位 系统用户  hou 工具: jdk-8u171-linux-x64.tar.gz 实验的心 步骤: 第一步: 查看有没有装jdk,按住  ctr+a ...

  3. 2018中国大学生程序设计竞赛 - 网络选拔赛---Find Integer!--hdu6441

    问题传送门:https://vjudge.net/contest/320779#problem/D 介绍一个名词:奇偶数列法则 Key part: #include<iostream> # ...

  4. 题解 P5733 【【深基6.例1】自动修正】

    题目传送门 分析: 1.这道题可以说是一个字符串的练习好题.我们先来了解一下字符串.在这道题中,建议使用\(string\) \(string\)是\(C++\).\(java\).\(VB\)等编程 ...

  5. 不同页面获取同一cookie变量值不同的问题及解决方法

    在使用cookie时发现不同页面获取到的同一个cookie变量的值不同,本篇博客介绍其中一种情况的解决方法,通过设置path的方法可使得在同一个网站下获取的cookie变量一致. 问题描述 在www. ...

  6. linux分区命令parted的用法

    parted的适用场景 创建操作大于2T的分区 一般情况下,我们都是选择使用fdisk工具来进行分区,但是目前在实际生产环境中使用的磁盘空间越来越大,呈TiB级别增长:而常用的fdisk这个工具对分区 ...

  7. ANDROID开发之问题积累及解决方案(三)

    1.dexDebug ExecException finished with non-zero exit value 2需要在gradle中配置下面的代码,原因是引用了多个libraries文件 de ...

  8. 出现“无法在发送 HTTP 标头之后进行重定向”问题

    如题,在Response.Redirect之后会偶尔出现“无法在发送HTTP标头之后进行重定向”问题. 是因为,已经在出现错误的代码之前进行过一次重定向了.仔细检查代码即可. 解决方法:按照逻辑移除多 ...

  9. 从原理到方案,一步步讲解web移动端实现自适应等比缩放

    前言 在移动端做自适应,我们常用的有媒体查询,rem ,em,宽度百分比这几种方案.但是都各有其缺点. 首先拿媒体查询来说,在某一个宽度区间内只能使用一种样式,为了适应不同屏幕要,css的代码量就会增 ...

  10. Android 系统签名

    在做android产品开发的时候,很多时候都需要使用系统签名(比如在使用uid,APK升级的时候),所以,android提供给我们自定义签名文件的工具.这里将流程记录下来: 1.进入/android_ ...