import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_classification():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 digits 数据集
digits=datasets.load_digits()
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) #集成学习AdaBoost算法分类模型
def test_AdaBoostClassifier(*data):
'''
测试 AdaBoostClassifier 的用法,绘制 AdaBoostClassifier 的预测性能随基础分类器数量的影响
'''
X_train,X_test,y_train,y_test=data
clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
clf.fit(X_train,y_train)
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostClassifier")
plt.show() # 获取分类数据
X_train,X_test,y_train,y_test=load_data_classification()
# 调用 test_AdaBoostClassifier
test_AdaBoostClassifier(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_base_classifier(*data):
'''
测试 AdaBoostClassifier 的预测性能随基础分类器数量和基础分类器的类型的影响
'''
from sklearn.naive_bayes import GaussianNB X_train,X_test,y_train,y_test=data
fig=plt.figure()
ax=fig.add_subplot(2,1,1)
########### 默认的个体分类器 #############
clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1)
ax.set_title("AdaBoostClassifier with Decision Tree")
####### Gaussian Naive Bayes 个体分类器 ########
ax=fig.add_subplot(2,1,2)
clf=ensemble.AdaBoostClassifier(learning_rate=0.1,base_estimator=GaussianNB())
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1)
ax.set_title("AdaBoostClassifier with Gaussian Naive Bayes")
plt.show() # 调用 test_AdaBoostClassifier_base_classifier
test_AdaBoostClassifier_base_classifier(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_learning_rate(*data):
'''
测试 AdaBoostClassifier 的预测性能随学习率的影响
'''
X_train,X_test,y_train,y_test=data
learning_rates=np.linspace(0.01,1)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
traing_scores=[]
testing_scores=[]
for learning_rate in learning_rates:
clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,n_estimators=500)
clf.fit(X_train,y_train)
traing_scores.append(clf.score(X_train,y_train))
testing_scores.append(clf.score(X_test,y_test))
ax.plot(learning_rates,traing_scores,label="Traing score")
ax.plot(learning_rates,testing_scores,label="Testing score")
ax.set_xlabel("learning rate")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostClassifier")
plt.show() # 调用 test_AdaBoostClassifier_learning_rate
test_AdaBoostClassifier_learning_rate(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_algorithm(*data):
'''
测试 AdaBoostClassifier 的预测性能随学习率和 algorithm 参数的影响
'''
X_train,X_test,y_train,y_test=data
algorithms=['SAMME.R','SAMME']
fig=plt.figure()
learning_rates=[0.05,0.1,0.5,0.9]
for i,learning_rate in enumerate(learning_rates):
ax=fig.add_subplot(2,2,i+1)
for i ,algorithm in enumerate(algorithms):
clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,algorithm=algorithm)
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="%s:Traing score"%algorithms[i])
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="%s:Testing score"%algorithms[i])
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_title("learing rate:%f"%learning_rate)
fig.suptitle("AdaBoostClassifier")
plt.show() # 调用 test_AdaBoostClassifier_algorithm
test_AdaBoostClassifier_algorithm(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型的更多相关文章

  1. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  2. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  3. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  6. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  7. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  8. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  9. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

随机推荐

  1. php Allowed memory size of 134217728 bytes exhausted

    报错:PHP Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 72 bytes) in ...

  2. ASP.NET Process Model之二:ASP.NET Http Runtime Pipeline - Part II

    https://www.cnblogs.com/artech/archive/2007/09/13/891266.html 二.ASP.NET Runtime Pipeline(续ASP.NET Ht ...

  3. fastadmin 框架中图片点击放大

    fastadmin的原生图片预览,重新打开一个窗口太麻烦,使用layui做一个弹窗式的图片预览 1.将下面代码放在backend-init.js文件中 $('body').on('click', '[ ...

  4. 《深入理解Java虚拟机》读书笔记六

    第七章 虚拟机类加载机制 1.类加载的时机 虚拟机的类加载机制: 虚拟机把描述类的数据从class文件中加载到内存,并对数据进行校验.转换解析和初始化,最终形成了可以被虚拟机直接使用的Java类型,这 ...

  5. pytest学习1-安装和入门

    一.安装pytest: 在命令行窗口下执行: pip install -U pytest 检查安装的pytest版本: pytest -v 二.运行第一个测试用例: import pytest def ...

  6. 记录 shell学习过程(9)正则表达式 转自树明聊运维

    正则表达式 正则表达式介绍 特殊字符 POSIX特殊字符 一.正则表达式介绍 正则表达式是一种文本模式匹配,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为"元字符") ...

  7. Big research problems (1)

    1. how to measure the uncertainty of prediction model or data analysis? 2.

  8. flask入门(二)

    接着上文 讲一讲响应 flask调用视图函数后,会将其返回值作为响应的内容.大多数情况下,响应就是一个简单的字符串,作为HTML页面回送客户端.但HTTP协议需要的不仅是作为请求响应的字符串.HTTP ...

  9. make && make install

    ./configure  --prefix= /usr/local/python3.6.6 make &&  make  install  prefix=/usr/local/pyth ...

  10. 怎样判断一个exe可执行程序是32位的还是64位的(转)

    转载自:https://blog.csdn.net/qq_23308823/article/details/54898119 怎样判断一个exe可执行程序是32位的还是64位的