import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_classification():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 digits 数据集
digits=datasets.load_digits()
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) #集成学习AdaBoost算法分类模型
def test_AdaBoostClassifier(*data):
'''
测试 AdaBoostClassifier 的用法,绘制 AdaBoostClassifier 的预测性能随基础分类器数量的影响
'''
X_train,X_test,y_train,y_test=data
clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
clf.fit(X_train,y_train)
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostClassifier")
plt.show() # 获取分类数据
X_train,X_test,y_train,y_test=load_data_classification()
# 调用 test_AdaBoostClassifier
test_AdaBoostClassifier(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_base_classifier(*data):
'''
测试 AdaBoostClassifier 的预测性能随基础分类器数量和基础分类器的类型的影响
'''
from sklearn.naive_bayes import GaussianNB X_train,X_test,y_train,y_test=data
fig=plt.figure()
ax=fig.add_subplot(2,1,1)
########### 默认的个体分类器 #############
clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1)
ax.set_title("AdaBoostClassifier with Decision Tree")
####### Gaussian Naive Bayes 个体分类器 ########
ax=fig.add_subplot(2,1,2)
clf=ensemble.AdaBoostClassifier(learning_rate=0.1,base_estimator=GaussianNB())
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1)
ax.set_title("AdaBoostClassifier with Gaussian Naive Bayes")
plt.show() # 调用 test_AdaBoostClassifier_base_classifier
test_AdaBoostClassifier_base_classifier(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_learning_rate(*data):
'''
测试 AdaBoostClassifier 的预测性能随学习率的影响
'''
X_train,X_test,y_train,y_test=data
learning_rates=np.linspace(0.01,1)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
traing_scores=[]
testing_scores=[]
for learning_rate in learning_rates:
clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,n_estimators=500)
clf.fit(X_train,y_train)
traing_scores.append(clf.score(X_train,y_train))
testing_scores.append(clf.score(X_test,y_test))
ax.plot(learning_rates,traing_scores,label="Traing score")
ax.plot(learning_rates,testing_scores,label="Testing score")
ax.set_xlabel("learning rate")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostClassifier")
plt.show() # 调用 test_AdaBoostClassifier_learning_rate
test_AdaBoostClassifier_learning_rate(X_train,X_test,y_train,y_test)

def test_AdaBoostClassifier_algorithm(*data):
'''
测试 AdaBoostClassifier 的预测性能随学习率和 algorithm 参数的影响
'''
X_train,X_test,y_train,y_test=data
algorithms=['SAMME.R','SAMME']
fig=plt.figure()
learning_rates=[0.05,0.1,0.5,0.9]
for i,learning_rate in enumerate(learning_rates):
ax=fig.add_subplot(2,2,i+1)
for i ,algorithm in enumerate(algorithms):
clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,algorithm=algorithm)
clf.fit(X_train,y_train)
## 绘图
estimators_num=len(clf.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="%s:Traing score"%algorithms[i])
ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="%s:Testing score"%algorithms[i])
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_title("learing rate:%f"%learning_rate)
fig.suptitle("AdaBoostClassifier")
plt.show() # 调用 test_AdaBoostClassifier_algorithm
test_AdaBoostClassifier_algorithm(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型的更多相关文章

  1. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  2. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  3. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  6. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  7. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  8. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  9. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

随机推荐

  1. MongoDB geonear和文本命令驱动程序2.0

    文本查询,q作为查询字符串: coll.FindAsync<Foo>(Builders<Foo>.Filter.Text(q)); 文本查询需要一个文本索引.要从C#创建代码, ...

  2. 备份Sql Server中的某些表

    第一步:右键需要备份表的数据库 第二步:选择=>选择特定数据库对象,在下方选择你需要备份的数据表. 第三步,点击高级,在要编写脚本的数据的类型中选择架构和数据(看个人需要),根据需要可更换生成的 ...

  3. jquery tagsinput监听输入、修改、删除事件

    个人博客 地址:http://www.wenhaofan.com/article/20181118192458 由于度娘上的根本搜不到对应的操作,连该插件对应的文档介绍都没有,不得已debug了源码才 ...

  4. JVM学习-环境构建

    想学习JVM,java虚拟机的底层原理.下面介绍下怎么将Java文件compiler成字节码,然后反编译为二进制查看分析. 一.JavaClass.java文件: package com.gqz.ja ...

  5. 二分-B - Dating with girls(1)

    B - Dating with girls(1) Everyone in the HDU knows that the number of boys is larger than the number ...

  6. 如来十三掌-关于不断解密的密码学,佛语解密,rot-13(根据13掌),base64

    得到MzkuM3gvMUAwnzuvn3cgozMlMTuvqzAenJchMUAeqzWenzEmLJW9 然后尝试嘛 base64不太行 那根据十三掌??rot-13 得到ZmxhZ3tiZHNj ...

  7. OpenCV3+VS2015 经常出现debug error abort()has been called问题

    方案1:图片路径错误:查看imread的路径

  8. Entry小部件:

    导入tkinter import Tkinter from Tinter import * import tkinter from tinter import * 实例化Tk类 root=tkinte ...

  9. 【Python】浮点数用科学计数法表示

  10. codeforces 1269D. Domino for Young (二分图证明/结论题)

    链接:https://codeforces.com/contest/1269/problem/D 题意:给一个不规则的网格,在上面放置多米诺骨牌,多米诺骨牌长度要么是1x2,要么是2x1大小,问最多放 ...