题目传送门

题意:现在有n座山峰,现在 i-1 与 i 座山峰有 di长的路,现在有m个宠物, 分别在hi座山峰,第ti秒之后可以被带走,现在有p个人,每个人会从1号山峰走到n号山峰,速度1m/s。现在你可以安排好这p个人的出发时间,问所有宠物的等待时间是多少。

题解:

斜率优化DP

我们知道一个人出发之后,该宠物的等待时间就已经决定了。

所以我们可以把每个宠物的0等待时间算出来, 即 A[i] = t[i] - d[h[i]], d为1-h[i]的距离

然后把A[i]排序之后,就可以得到一个出发时间的递增序列。

dp[i] = dp[j]+ A[i]*(i-j) - (S[i] - S[j]);

dp[j] + S[j] = A[i] * j      - A[I]*i + S[i]

我们就可以维护一个(j,  dp[j]+S[j])的下凸壳。

然后对于这个题目来说, p个人,那么则需要dp p 次, 每一次的答案都是通过上一层转移过来的, 即  dp[k][i] = dp[k-1][j] + A[i]*(i-j) - (S[i] - S[j]);

然后对于这个过程我们可以用滚动数组去优化空间。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
LL A[N], S[N], f[N], ff[N];
int d[N], q[N];
int L, R;
int main(){
int n, m, p;
scanf("%d%d%d", &n, &m, &p);
for(int i = ; i <= n; ++i){
scanf("%d", &d[i]);
d[i] += d[i-];
}
int h, t;
for(int i = ; i <= m; ++i){
scanf("%d%d", &h, &t);
A[i] = t - d[h];
}
sort(A+, A++m);
for(int i = ; i <= m; ++i)
S[i] = S[i-] + A[i];
for(int i = ; i <= m; ++i)
f[i] = A[i]*i - S[i];
L = R = ;
q[] = ;
for(int k = ; k <= p; ++k){
L = R = ;
for(int i = ; i <= m; ++i){
while(L < R && (f[q[R]]+ S[q[R]] - f[q[R-]]-S[q[R-]]) * (i - q[R]) >= (f[i]+ S[i] - f[q[R]]-S[q[R]]) * (q[R] - q[R-])) --R;
q[++R] = i;
while(L < R && ((f[q[L+]]+ S[q[L+]] - f[q[L]]-S[q[L]]) <= A[i] * (q[L+]-q[L]))) ++L;
ff[i] = f[q[L]] + A[i]*(i-q[L]) - (S[i] - S[q[L]]);
}
for(int i = ; i <= m; ++i)
f[i] = ff[i];
}
cout << f[m] << endl;
return ;
}

CodeForces 311 B Cats Transport 斜率优化DP的更多相关文章

  1. Codeforces 311B Cats Transport 斜率优化dp

    Cats Transport 出发时间居然能是负的,我服了... 卡了我十几次, 我一直以为斜率优化写搓了. 我们能得出dp方程式 dp[ i ][ j ] = min(dp[ k ][ j - 1 ...

  2. CF311B Cats Transport 斜率优化DP

    题面:CF311B Cats Transport 题解: 首先我们观察到山与距离其实是没有什么用的,因为对于任意一只猫,我们都可以直接算出如果有一个人要恰好接走它,需要在哪一时刻出发,我们设第i只猫对 ...

  3. CF331B Cats Transport[斜率优化dp+贪心]

    luogu翻译 一些山距离起点有距离且不同,m只猫要到不同的山上去玩ti时间,有p个铲屎官人要去把所有猫接走,步行速度为1单位每秒,从1走到N座山不停下,必须在猫玩完后才可以把他带走.可以提前出发.问 ...

  4. 【题解】Cats Transport (斜率优化+单调队列)

    [题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:1 ...

  5. Codeforces 643C Levels and Regions 斜率优化dp

    Levels and Regions 把dp方程列出来, 把所有东西拆成前缀的形式, 就能看出可以斜率优化啦. #include<bits/stdc++.h> #define LL lon ...

  6. $CF311B\ Cats\ Transport$ 斜率优化

    AcWing Description Sol 设f[i][j]表示前i个饲养员接走前j只猫咪的最小等待时间. 要接到j猫咪,饲养员的最早出发时间是可求的,设为d: $ d[j]=Tj-\sum_{k= ...

  7. 2018.09.07 codeforces311B. Cats Transport(斜率优化dp)

    传送门 斜率优化dp好题. 对于第i只猫,显然如果管理员想从出发开始刚好接到它,需要在t[i]=h[i]−dist(1,i)" role="presentation" s ...

  8. CF-311B Cats Transport(斜率优化DP)

    题目链接 题目描述 小S是农场主,他养了 \(M\)只猫,雇了 \(P\) 位饲养员. 农场中有一条笔直的路,路边有 \(N\) 座山,从 \(1\) 到 \(N\)编号. 第 \(i\) 座山与第 ...

  9. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

随机推荐

  1. netty使用EmbeddedChannel对channel的出入站进行单元测试

    一种特殊的Channel实现----EmbeddedChannel,它是Netty专门为改进针对ChannelHandler的单元测试而提供的. 名称 职责 writeInbound 将入站消息写到E ...

  2. Dubbo源码学习之-服务导出

    前言 忙的时候,会埋怨学习的时间太少,缺少个人的空间,于是会争分夺秒的工作.学习.而一旦繁忙的时候过去,有时间了之后,整个人又会不自觉的陷入一种懒散的状态中,时间也显得不那么重要了,随便就可以浪费掉几 ...

  3. 一文搞懂 Prometheus 的直方图

    原文链接:一文搞懂 Prometheus 的直方图 Prometheus 中提供了四种指标类型(参考:Prometheus 的指标类型),其中直方图(Histogram)和摘要(Summary)是最复 ...

  4. DataPipeline丨DataOps理念与设计原则

    作者:DataPipeline CEO 陈诚 上周我们探讨了数据的「资产负债表」与「现状」,期间抛给大家一个问题:如果我们制作一个企业的“数据资产负债表”,到底会有多少数据是企业真正的资产? 数据出现 ...

  5. ThreadPoolExecutor线程池的一个面试题

    问题:现有一个线程池,参数corePoolSize = 5,maximumPoolSize = 10,BlockingQueue阻塞队列长度为5,此时有4个任务同时进来,问:线程池会创建几条线程? 如 ...

  6. 实验:keepalived双主抢占模式和非抢占模式和IPVS

    内容: 一:概念.原理   二:实验过程 一.概念 一.keepalived原理及配置解析 keepalived:vrrp协议的实现 vrrp协议:virtual router redundancy ...

  7. 配置Windows Server 2008环境

    上一章已经把Windows Server2008操作系统安装完毕,接下来配置一下Windows Server环境.配置网络和共享中心.配置桌面环境.配置用户IE设置.安装Telnet远程工具.配置文件 ...

  8. Unity进阶之ET网络游戏开发框架 01-下载、运行

    版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...

  9. go 学习笔记之数组还是切片都没什么不一样

    上篇文章中详细介绍了 Go 的基础语言,指出了 Go 和其他主流的编程语言的差异性,比较侧重于语法细节,相信只要稍加记忆就能轻松从已有的编程语言切换到 Go 语言的编程习惯中,尽管这种切换可能并不是特 ...

  10. 二阶段js 入门知识点 自我总结复习

    二阶段自我总复习   1.javascript基础 :  客户端   安全性   跨平台   脚本语言 三大结构:  顺序 .选择.循环                    顺序:运算符和表达式  ...