BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*
BZOJ2595 Wc2008 游览计划
Description
Input
第一行有两个整数,N和 M,描述方块的数目。
接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点;
否则表示控制该方块至少需要的志愿者数目。 相邻的整数用 (若干个) 空格隔开,
行首行末也可能有多余的空格。
Output
由 N + 1行组成。第一行为一个整数,表示你所给出的方案中安排的志愿者总数目。
接下来 N行,每行M 个字符,描述方案中相应方块的情况:
z ‘_’(下划线)表示该方块没有安排志愿者;
z ‘o’(小写英文字母o)表示该方块安排了志愿者;
z ‘x’(小写英文字母x)表示该方块是一个景点;
注:请注意输出格式要求,如果缺少某一行或者某一行的字符数目和要求不
一致(任何一行中,多余的空格都不允许出现) ,都可能导致该测试点不得分。
Sample Input
4 4
0 1 1 0
2 5 5 1
1 5 5 1
0 1 1 0
Sample Output
6
xoox
___o
___o
xoox
HINT
对于100%的数据,N,M,K≤10,其中K为景点的数目。输入的所有整数均在[0,2^16]的范围内
斯坦纳树,状压DP记录路径
还有一点小小的不同,就是这道题用子集信息进行更新的时候我们需要减去当前点的权值一次,因为两个子集都包含了这个点,权值多算了一次
有关斯坦纳树的总结,请看https://www.cnblogs.com/dream-maker-yk/p/9676340.html
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 11
struct Node{int x,y,s;};
int mx[]={0,0,1,-1};
int my[]={1,-1,0,0};
int n,m,maxs;
int cost[N][N],st[N][N],vis[N][N],cnt;
int d[N][N][1<<N];
Node pre[N][N][1<<N];
bool in[N][N][1<<N];
queue<Node> Q;
void SPFA(){
while(!Q.empty()){
Node t=Q.front();Q.pop();
int x=t.x,y=t.y,s=t.s;
in[x][y][s]=0;
for(int i=0;i<4;i++){
int tx=x+mx[i],ty=y+my[i],ts=s|st[tx][ty];
if(tx<1||tx>n||ty<1||ty>m)continue;
if(d[tx][ty][ts]>d[x][y][s]+cost[tx][ty]){
d[tx][ty][ts]=d[x][y][s]+cost[tx][ty];
pre[tx][ty][ts]=t;
if(!in[tx][ty][ts]&&s==ts){
in[tx][ty][ts]=1;
Q.push((Node){tx,ty,ts});
}
}
}
}
}
void dfs(int x,int y,int s){
vis[x][y]=1;
Node t=pre[x][y][s];
int tx=t.x,ty=t.y,ts=t.s;
if(!tx&&!ty&&!ts)return;
dfs(tx,ty,ts);
if(x==tx&&y==ty)dfs(x,y,(s-ts)|st[x][y]);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&cost[i][j]);
if(!cost[i][j])st[i][j]=1<<(cnt++);
}
maxs=(1<<cnt)-1;
memset(d,0x3f,sizeof(d));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(st[i][j])d[i][j][st[i][j]]=0;
for(int k=0;k<=maxs;k++){
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(st[i][j]&&!(st[i][j]&k))continue;
for(int x=(k-1)&k;x;x=(x-1)&k){
int t=d[i][j][x|st[i][j]]+d[i][j][(k-x)|st[i][j]]-cost[i][j];
if(t<d[i][j][k]){
d[i][j][k]=t;
pre[i][j][k]=(Node){i,j,x|st[i][j]};
}
}
if(d[i][j][k]<INF){
Q.push((Node){i,j,k});
in[i][j][k]=1;
}
}
SPFA();
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)if(st[i][j]){
printf("%d\n",d[i][j][maxs]);
dfs(i,j,maxs);
for(int x=1;x<=n;x++){
for(int y=1;y<=m;y++){
if(st[x][y])putchar('x');
else if(vis[x][y])putchar('o');
else putchar('_');
}
putchar('\n');
}
return 0;
}
return 0;
}
BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*的更多相关文章
- BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)
Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2030 Solved: 986[Submit][Status][ ...
- bzoj2595 [Wc2008]游览计划——斯坦纳树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...
- bzoj2595: [Wc2008]游览计划 斯坦纳树
斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...
- 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp
题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...
- 【BZOJ2595】[Wc2008]游览计划 斯坦纳树
[BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...
- Luogu 4294 [WC2008]游览计划 | 斯坦纳树
题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...
- 【BZOJ-2595】游览计划 斯坦纳树
2595: [Wc2008]游览计划 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1518 Solved: 7 ...
- BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树
[题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...
- P4294 [WC2008]游览计划 (斯坦纳树)
题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
随机推荐
- 解决httpclient请求响应压缩文本乱码问题
最近在调用京东的获取省份接口老是中文乱码,加了utf-8也没有用.最后在httpclient打的日志中有Content-Encoding:gzip信息,最后在请求header里加上: reqHeade ...
- 记录一下我的mac的环境变量的配置参数
#配置jdk环境export JAVA_7_HOME=/Library/java/JavaVirtualMachines/jdk1.7.0_79.jdk/Contents/Homeexport JAV ...
- python调用虹软2.0第二版
第一版踩了无数的坑,终于第二版把坑全添了,这次更新可以正常获取人脸数,角度,代码可读性更高,继续更新中 第三版已发出 https://www.cnblogs.com/wxt51/p/10125460. ...
- mysql 不同条件count ,多条件count()
create table abc(A int,B int) Select A,count(B) as total from ABC group by A Select A,count(B) as to ...
- PHP表单(get,post)提交方式
PHP 表单处理 PHP 超全局变量 $_GET 和 $_POST 用于收集表单数据(form-data). $_GET 是通过 URL 参数传递到当前脚本的变量数组. $_POST 是通过 HTTP ...
- C++(三十) — this 指针
1.如何区分多个对象调用同一个类函数? 类外部访问类成员,必须用对象来调用.一个类的所有对象在调用的成员函数,都执行同一段代码,那成员函数如何区分属于哪个对象呢? 在对象调用成员函数时,除接收实参外, ...
- hdu4318阶梯博弈nim变形
阶梯博弈原理参考:http://www.cnblogs.com/jiangjing/p/3849284.html 这题计算每两个之间的间隔就行了,如果是奇数个就把第一个前面的看作一个,偶数个就是两个点 ...
- UVALive-5135 Mining Your Own Business (无向图的双连通分量)
题目分析:在一张无向图中,将一些点涂上黑色,使得删掉图中任何一个点时,每个连通分量至少有一个黑点.问最少能涂几个黑点,并且在涂最少的情况下有几种方案. 题目分析:显然,一定不能涂割点.对于每一个连通分 ...
- react 子组件改变父组件状态
class Father extends Component { construtor(props){ super(props); this.state={ ...
- Day34 设计模式
参考博客: http://www.cnblogs.com/alex3714/articles/5760582.html 什么是设计模式 Christopher Alexander:“每一个模式描述了一 ...