[SDOI2014]数数

题目描述:

我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串。

例如当S=(22,333,0233)时,233是幸运数,2333、20233、3223不是幸运数。

给定N和S,计算不大于N的幸运数个数。

输入格式:

输入的第一行包含整数N。

接下来一行一个整数M,表示S中元素的数量。

接下来M行,每行一个数字串,表示S中的一个元素。

输出格式:

输出一行一个整数,表示答案模\(10^{9}+7\)的值。

跟[JSOI2007]文本生成器类似

把DP更改为数位DP即可

增添一维 \(dp(i,j,k)\: , k\: \epsilon (0,1)\)

k = 0时,表示第 i 位不受限制时的数量

k = 1时,表示第 i 位受到限制时的数量

转移时;

\( dp(i, j, 1) = dp(i, j, 1) + dp(i - 1, v, 1) ;\)

\( dp(i, j, 0) = dp(i, j, 0) + dp(i-1, v, 0) ;\)

\( dp(i, j, 1) = dp(i, j, 1) + dp(i-1, v, 0),\: v \leq n;\)

初值注意也要限制;

代码在此

[SDOI2014]数数 --- AC自动机 + 数位DP的更多相关文章

  1. 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 682  Solved: 364 Description 我们称一 ...

  2. 【JZOJ3624】【SDOI2014】数数(count) AC自动机+数位dp

    题面 100 容易想到使用AC自动机来处理禁忌子串的问题: 然后在自动机上数位dp,具体是: \(f_{i,j,0/1}\)表示填了\(i\)位,当前在自动机的第\(j\)个结点上,\(0\)表示当前 ...

  3. 【bzoj3530】[Sdoi2014]数数 AC自动机+数位dp

    题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...

  4. BZOJ 3530 [SDOI2014]数数 (Trie图/AC自动机+数位DP)

    题目大意:略 裸的AC自动机+数位DP吧... 定义f[i][x][0/1]表示已经匹配到了第i位,当前位置是x,0表示没到上限,1到上限,此时数是数量 然而会出现虚拟前导零,即前几位没有数字的情况, ...

  5. BZOJ 3530: [Sdoi2014]数数 [AC自动机 数位DP]

    3530: [Sdoi2014]数数 题意:\(\le N\)的不含模式串的数字有多少个,\(n=|N| \le 1200\) 考虑数位DP 对于长度\(\le n\)的,普通套路DP\(g[i][j ...

  6. BZOJ3530:[SDOI2014]数数(AC自动机,数位DP)

    Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...

  7. BZOJ3530[Sdoi2014]数数——AC自动机+数位DP

    题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...

  8. P3311 [SDOI2014]数数 AC自动机+数位DP

    题意 给定一个正整数N和n个模式串,问不大于N的数字中有多少个不包含任意模式串,输出对\(1e^9+7\)取模后的答案. 解题思路 把所有模式串都加入AC自动机,然后跑数位DP就好了.需要注意的是,这 ...

  9. HDU-4518 吉哥系列故事——最终数 AC自动机+数位DP

    题意:如果一个数中的某一段是长度大于2的菲波那契数,那么这个数就被定义为F数,前几个F数是13,21,34,55......将这些数字进行编号,a1 = 13, a2 = 21.现给定一个数n,输出和 ...

随机推荐

  1. 【CODEVS】1033 蚯蚓的游戏问题

    [算法]网络流-最小费用最大流(费用流) [题解]与方格取数2类似 在S后添加辅助点S_,限流k 每条边不能重复走,限流1 #include<cstdio> #include<alg ...

  2. 【BZOJ】2243 [SDOI2011]染色

    [算法]树链剖分+线段树 [题解] 树链剖分算法:http://www.cnblogs.com/onioncyc/p/6207462.html 定义线段树结构体有l,r,lc,rc,sum,data. ...

  3. 【CodeForces】913 C. Party Lemonade

    [题目]C. Party Lemonade [题意]给定n个物品,第i个物品重量为2^(i-1)价值为ci,每个物品可以无限取,求取总重量>=L的最小代价.1<=30<=n,1< ...

  4. Spring Cloud全家桶主要组件及简要介绍

    一.微服务简介 微服务是最近的一两年的时间里是很火的一个概念.感觉不学习一下都快跟不上时代的步伐了,下边做一下简单的总结和介绍. 何为微服务?简而言之,微服务架构风格这种开发方法,是以开发一组小型服务 ...

  5. vue-cli使用说明

    一.安装npm install -g vue-cli 推荐使用国内镜像 先设置cnpm npm install -g cnpm --registry=https://registry.npm.taob ...

  6. Linux下的lds链接脚本详解【转】

    转自:http://www.cnblogs.com/li-hao/p/4107964.html 转载自:http://linux.chinaunix.net/techdoc/beginner/2009 ...

  7. SSL证书生成方法【转】

    转自 SSL证书生成方法 - fyang的专栏 - 博客频道 - CSDN.NEThttp://blog.csdn.net/fyang2007/article/details/6180361 一般情况 ...

  8. 多个id或class属性相同的元素绑定事件

    <td class="tools"><a href="javascript:void(0);" status="0" na ...

  9. SQLserver连接本地服务器

    1.打开SQLserver “连接到服务器” 2.服务器类型:数据库引擎 3.服务器名称:浏览更多->本地服务器->数据库引擎->选择本地服务器 4.身份验证:windows验证 5 ...

  10. 大数据系列之分布式数据库HBase-1.2.4+Zookeeper 安装及增删改查实践

    之前介绍过关于HBase 0.9.8版本的部署及使用,本篇介绍下最新版本HBase1.2.4的部署及使用,有部分区别,详见如下: 1. 环境准备: 1.需要在Hadoop[hadoop-2.7.3]  ...