The Water Bowls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5329   Accepted: 2081

Description

The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls.

Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).

Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

Input

Line 1: A single line with 20 space-separated integers

Output

Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

Sample Input

0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

Sample Output

3

Hint

Explanation of the sample:

Flip bowls 4, 9, and 11 to make them all drinkable: 
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]

题意:

给你一排碗,当翻动其中一个时,它和周围两个都翻转,多变元枚举最小值

/*
poj3185
给你20个碗排成一排,当翻动其中一个时,它和周围两个都翻转 */
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
const int maxn = 40; int equ,var;
int a[maxn][maxn];
int b[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num; int Gauss()
{
int max_r,col,k;
free_num = 0;
for(k = 0,col = 0; k < equ && col < var; k++,col++)
{
max_r = k;
for(int i = k+1; i < equ; i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == 0)
{
k --;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]); }
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
for(int j = col; j < var+1; j++)
a[i][j] ^= a[k][j];
}
} }
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var) return var-k; for(int i = var-1; i >= 0; i--)
{
x[i] = a[i][var];
for(int j = i +1; j < var; j++)
x[i] ^= (a[i][j] && x[j]); }
return 0; } int n;
void ini()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
equ = 20;
var = 20;
for(int i = 0;i < 20;i++)
{
a[i][i] = 1;
if(i > 0) a[i-1][i] = 1;
if(i < 20-1) a[i+1][i]= 1;
}
} int solve()
{
int t = Gauss();
if(t == -1)
{
return t;
}
else if(t == 0)
{
int ans = 0;
for(int i = 0; i < n*n; i++)
ans += x[i];
return ans;
}
else
{
int ans = 0x3f3f3f3f;
int tot = (1 << t);
for(int i = 0; i < tot; i++)
{
int cnt = 0;
for(int j = 0; j < t; j++)
{
if(i & (1 << j))
{
cnt ++;
x[free_x[j]]= 1;
}
else x[free_x[j]]= 0;
} for(int j = var-t-1; j >= 0; j--)
{
int dex;
for(dex = j; dex < var; dex++)
if(a[j][dex])
break;
x[dex] = a[j][var];
for(int l = dex +1; l <var ; l++)
{
if(a[j][l])
x[dex] ^= x[l];
}
cnt += x[dex];
}
ans = min(ans,cnt);
}
return ans;
}
} int main()
{
int tx;
while(scanf("%d",&tx) != EOF)
{
ini();
if(tx == 1)
a[0][20] = 1;
else
a[0][20] = 0;
for(int i= 1; i < 20; i ++)
{
scanf("%d",&tx);
if(tx == 1)
a[i][20] = 1;
else
a[i][20] = 0;
} int t = solve();
printf("%d\n",t);
}
return 0;
}

  

poj3185 高斯消元的更多相关文章

  1. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

  2. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  3. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  4. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  5. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  6. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  7. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  8. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  9. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

随机推荐

  1. android 检查软件是否有更新版本

    import java.net.HttpURLConnection; import java.net.URL; import java.util.HashMap; import com.yuxin.m ...

  2. 201421123042 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 继承中的关键词:Soper,object,override,project, 1.2 尝试使用思维导图将这些关键词组织起来.注: ...

  3. 服务器磁盘阵列数据恢复,raid5两块硬盘掉线数据恢复方法

    [用户单位信息] 农业科学研究院某研究所 [磁盘阵列故障发生过程描述]客户的DELL MD1000服务器内置15块1TB硬盘搭建为RAID5磁盘阵列阵列,服务器在正常工作中有一块硬盘离线,管理员对磁盘 ...

  4. 02-移动端开发教程-CSS3新特性(中)

    1. 新的背景 背景在CSS3中也得到很大程度的增强,比如背景图片尺寸.背景裁切区域.背景定位参照点.多重背景等. 1.1 background-size设置背景图片的尺寸 cover会自动调整缩放比 ...

  5. javascript原型链__proto__属性的理解

    在javascript中,按照惯例,构造函数始终都应该以一个大写字母开头,而非构造函数则应该以一个小写字母开头.一个方法使用new操作符创建,例如下面代码块中的Person1(可以吧Person1看做 ...

  6. WPS怎么让前几页的页眉或者页脚与后面的不同

    其实不管利用WPS还是office对文档还是PPT进行操作,其实核心思想还是一种编程,主要是前端的编程,就是通过改变一些这些软件设置的样式,然后通过改变这些样式,使这些文字以老师要求的格式显示出来的, ...

  7. Hazelcast分布式

    一般的应用正式环境中都不止一台服务器(也就是说是集群的),那么如果只是简单的将数据预加载到内存,那么就会有数据不同步的现象. (更新了其中一台JVM,另一台JVM并不会收到通知从而保持数据同步). 这 ...

  8. SpringMvc采用 http+json 实现前后端交互

    演示列表 报文表示 一.Json请求和Json响应 实现:Spring4.1.1.RELEASE + jackson2.4.4+JQuery1.10.2 1.pom.xml <propertie ...

  9. Spring Security 入门(1-1)Spring Security是什么?

    1.Spring Security是什么? Spring Security 是一个安全框架,前身是 Acegi Security , 能够为 Spring企业应用系统提供声明式的安全访问控制. Spr ...

  10. ubuntu 虚拟机上的 django 服务,在外部Windows系统上无法访问

    背景介绍 今天尝试着写了一个最简单的django 服务程序,使用虚拟机(Ubuntu16.02 LTS)上的浏览器访问程序没有问题.但是在物理机器上(win10 Home) 就出现错误 解决方法 在 ...