The Water Bowls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5329   Accepted: 2081

Description

The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls.

Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).

Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

Input

Line 1: A single line with 20 space-separated integers

Output

Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

Sample Input

0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

Sample Output

3

Hint

Explanation of the sample:

Flip bowls 4, 9, and 11 to make them all drinkable: 
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]

题意:

给你一排碗,当翻动其中一个时,它和周围两个都翻转,多变元枚举最小值

/*
poj3185
给你20个碗排成一排,当翻动其中一个时,它和周围两个都翻转 */
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
const int maxn = 40; int equ,var;
int a[maxn][maxn];
int b[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num; int Gauss()
{
int max_r,col,k;
free_num = 0;
for(k = 0,col = 0; k < equ && col < var; k++,col++)
{
max_r = k;
for(int i = k+1; i < equ; i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == 0)
{
k --;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]); }
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
for(int j = col; j < var+1; j++)
a[i][j] ^= a[k][j];
}
} }
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var) return var-k; for(int i = var-1; i >= 0; i--)
{
x[i] = a[i][var];
for(int j = i +1; j < var; j++)
x[i] ^= (a[i][j] && x[j]); }
return 0; } int n;
void ini()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
equ = 20;
var = 20;
for(int i = 0;i < 20;i++)
{
a[i][i] = 1;
if(i > 0) a[i-1][i] = 1;
if(i < 20-1) a[i+1][i]= 1;
}
} int solve()
{
int t = Gauss();
if(t == -1)
{
return t;
}
else if(t == 0)
{
int ans = 0;
for(int i = 0; i < n*n; i++)
ans += x[i];
return ans;
}
else
{
int ans = 0x3f3f3f3f;
int tot = (1 << t);
for(int i = 0; i < tot; i++)
{
int cnt = 0;
for(int j = 0; j < t; j++)
{
if(i & (1 << j))
{
cnt ++;
x[free_x[j]]= 1;
}
else x[free_x[j]]= 0;
} for(int j = var-t-1; j >= 0; j--)
{
int dex;
for(dex = j; dex < var; dex++)
if(a[j][dex])
break;
x[dex] = a[j][var];
for(int l = dex +1; l <var ; l++)
{
if(a[j][l])
x[dex] ^= x[l];
}
cnt += x[dex];
}
ans = min(ans,cnt);
}
return ans;
}
} int main()
{
int tx;
while(scanf("%d",&tx) != EOF)
{
ini();
if(tx == 1)
a[0][20] = 1;
else
a[0][20] = 0;
for(int i= 1; i < 20; i ++)
{
scanf("%d",&tx);
if(tx == 1)
a[i][20] = 1;
else
a[i][20] = 0;
} int t = solve();
printf("%d\n",t);
}
return 0;
}

  

poj3185 高斯消元的更多相关文章

  1. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

  2. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  3. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  4. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  5. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  6. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  7. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  8. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  9. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

随机推荐

  1. 微信浏览器的页面在PC端访问

    微信浏览器的页面在PC端访问: 普通的在微信浏览器看的页面如果不在php代码中解析一下,然后复制链接在PC打开就出现无法访问,因为它复制的地址是: https://open.weixin.qq.com ...

  2. ( 转 ) 聊一聊C#的Equals()和GetHashCode()方法

    聊一聊C#的Equals()和GetHashCode()方法   博客创建一年多,还是第一次写博文,有什么不对的地方还请多多指教. 关于这次写的内容可以说是老生长谈,百度一搜一大堆.大神可自行绕路. ...

  3. Mego开发文档 - 复杂查询

    复杂查询 Mego 还支持一些更高级的LLINQ查询写法,本文只列出一部分. 分组汇总查询 using (var db = new OrderManageEntities()) { var query ...

  4. Vue2学习小记-给Vue2路由导航钩子和axios拦截器做个封装

    1.写在前面 最近在学习Vue2,遇到有些页面请求数据需要用户登录权限.服务器响应不符预期的问题,但是总不能每个页面都做单独处理吧,于是想到axios提供了拦截器这个好东西,再于是就出现了本文. 2. ...

  5. react-native-image-picker 运用launchCamera直接调取摄像头的缺陷及修复

    在前几天用react-native进行android版本开发当中,用到了"react-native-image-picker"的插件:根据业务的需求:点击按钮-->直接调取摄 ...

  6. SpringCloud的注解:汇总篇

    使用注解之前要开启自动扫描功能,如下配置中base-package为需要扫描的包(含子包): 1 <context:component-scan base-package="cn.te ...

  7. python tornado TCPserver异步协程实例

    项目所用知识点 tornado socket tcpserver 协程 异步 tornado tcpserver源码抛析 在tornado的tcpserver文件中,实现了TCPServer这个类,他 ...

  8. centos虚拟机nat模式,可以上内网,不能上外网

    http://sky425509.iteye.com/blog/1996085 我这边的问题是,好久没用虚拟机了,重启之后,变成了dhcp模式,整个网卡配置变了. 重新配置了静态ip,网关,dns后才 ...

  9. DOM节点删除之empty和remove区别

    要移除页面上节点是开发者常见的操作,jQuery提供了几种不同的方法用来处理这个问题,这里我们开仔细了解下empty和remove方法 empty 顾名思义,清空方法,但是与删除又有点不一样,因为它只 ...

  10. Java-Maven(八):IDEA使用本地maven,并配置远程中央仓库

    声明:已经安装了maven,安装请参考:<Java-Maven(一):Maven的简介与安装> 1)一般我们从github.码云(https://gitee.com)上获取代码后,实际上我 ...