The Water Bowls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5329   Accepted: 2081

Description

The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls.

Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).

Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

Input

Line 1: A single line with 20 space-separated integers

Output

Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

Sample Input

0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

Sample Output

3

Hint

Explanation of the sample:

Flip bowls 4, 9, and 11 to make them all drinkable: 
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]

题意:

给你一排碗,当翻动其中一个时,它和周围两个都翻转,多变元枚举最小值

/*
poj3185
给你20个碗排成一排,当翻动其中一个时,它和周围两个都翻转 */
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
const int maxn = 40; int equ,var;
int a[maxn][maxn];
int b[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num; int Gauss()
{
int max_r,col,k;
free_num = 0;
for(k = 0,col = 0; k < equ && col < var; k++,col++)
{
max_r = k;
for(int i = k+1; i < equ; i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == 0)
{
k --;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]); }
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
for(int j = col; j < var+1; j++)
a[i][j] ^= a[k][j];
}
} }
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var) return var-k; for(int i = var-1; i >= 0; i--)
{
x[i] = a[i][var];
for(int j = i +1; j < var; j++)
x[i] ^= (a[i][j] && x[j]); }
return 0; } int n;
void ini()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
equ = 20;
var = 20;
for(int i = 0;i < 20;i++)
{
a[i][i] = 1;
if(i > 0) a[i-1][i] = 1;
if(i < 20-1) a[i+1][i]= 1;
}
} int solve()
{
int t = Gauss();
if(t == -1)
{
return t;
}
else if(t == 0)
{
int ans = 0;
for(int i = 0; i < n*n; i++)
ans += x[i];
return ans;
}
else
{
int ans = 0x3f3f3f3f;
int tot = (1 << t);
for(int i = 0; i < tot; i++)
{
int cnt = 0;
for(int j = 0; j < t; j++)
{
if(i & (1 << j))
{
cnt ++;
x[free_x[j]]= 1;
}
else x[free_x[j]]= 0;
} for(int j = var-t-1; j >= 0; j--)
{
int dex;
for(dex = j; dex < var; dex++)
if(a[j][dex])
break;
x[dex] = a[j][var];
for(int l = dex +1; l <var ; l++)
{
if(a[j][l])
x[dex] ^= x[l];
}
cnt += x[dex];
}
ans = min(ans,cnt);
}
return ans;
}
} int main()
{
int tx;
while(scanf("%d",&tx) != EOF)
{
ini();
if(tx == 1)
a[0][20] = 1;
else
a[0][20] = 0;
for(int i= 1; i < 20; i ++)
{
scanf("%d",&tx);
if(tx == 1)
a[i][20] = 1;
else
a[i][20] = 0;
} int t = solve();
printf("%d\n",t);
}
return 0;
}

  

poj3185 高斯消元的更多相关文章

  1. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

  2. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  3. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  4. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  5. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  6. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  7. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  8. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  9. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

随机推荐

  1. 标准C++类std::string的内存共享和Copy-On-Write(写时拷贝)

    标准C++类std::string的内存共享,值得体会: 详见大牛:https://www.douban.com/group/topic/19621165/ 顾名思义,内存共享,就是两个乃至更多的对象 ...

  2. xcode修改代码目录结构出现clang:error:nosuchfileordirectory解决方法

    需要迁移一个开源工程的一部分内容到自己工程,迁移对方的工程到自己工程之后,因目录结构配置整理需要,对嵌入的工程目录进行了结构改变,编译后出现: clang: error: no such file o ...

  3. Hibernate之Hibernate的体系结构

    体系结构简图: 这是一张体系结构的简图,其中的hibernate.properties文件的作用相当于配置文件hibernate.cfg.xml XML Mapping对应的就是映射文件 XXXX.h ...

  4. day-6 机器学习概念及应用

    学习玩Python基础语法,今天开始进行机器学习,首先了解下机器学习和深度学习的一些基本概念和术语: 1.  机器学习概念及应用 2.  深度学习概念及应用 3.  机器学习基本术语及举例 4.  机 ...

  5. var 和 let 的异同?

    相同点 声明后未赋值表现一致 不同点 1.使用未声明的变量表现不同 2.变量作用范围不同 3.var可以声明多次 let只能声明一次 let的好处就是当我们在写代码的时候可以避免在不知道的情况下重复声 ...

  6. JAVA_SE基础——72.自定义线程

    进程 :  正在执行的程序称作为一个进程.  进程负责了内存空间的划分.   问题: windows号称是多任务的操作系统,那么windows是同时运行多个应用程序吗?从宏观的角度: windows确 ...

  7. linux下安装配置jdk(解压版)

    在linux下登录oracle官网,下载解压版jdk    传送门 系统默认下载到"下载"目录中 创建要将该文件解压的文件夹: 其中 -p 参数代表递归创建文件夹(可以创建多级目录 ...

  8. egg.js 的优缺点

    egg.js 的优缺点 优点 所有的 web开发的点都考虑到了 agent 很有特色 文件夹规划到位 扩展能力优秀 缺点 最大的问题在于: 使用 loader 加载之后,失去了代码提示的能力 监控和运 ...

  9. kubernetes进阶(04)kubernetes的service

    一.service概念 Service是对一组提供相同功能的Pods的抽象,并为它们提供一个统一的入口.借助Service,应用可以方便的实现服务发现与负载均衡,并实现应用的零宕机升级.Service ...

  10. redis入门(01)redis的下载和安装

    参考链接: 命令手册 : http://www.redis.net.cn/order/ 菜鸟教程: http://www.runoob.com/redis/redis-install.html 一.概 ...