传送门

一道不错的题。


考虑n==kn==kn==k的时候怎么做。

显然应该从nnn到111如果灯是开着的就把它关掉这样是最优的。

不然如果乱关的话会互相影响肯定不如这种优。

于是就可以定义状态f[i]f[i]f[i]表示从当前按iii盏为最优方案转移到按i−1i-1i−1盏为最优方案的代价。

然后f[i]=in+n−in∗(1+f[i]+f[i+1])f[i]=\frac i n+\frac {n-i} n*(1+f[i]+f[i+1])f[i]=ni​+nn−i​∗(1+f[i]+f[i+1])

移项解方程可以推出最后的式子:

f[i]=in∗(n+(n−i)∗f[i+1])f[i]=\frac i n*(n+(n-i)*f[i+1])f[i]=ni​∗(n+(n−i)∗f[i+1])

代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
typedef long long ll;
const int N=1e5+5,mod=1e5+3;
int n,k,inv[N],a[N],f[N],ans=0,cnt=0;
int main(){
	n=read(),k=read();
	for(int i=1;i<=n;++i)a[i]=read();
	for(int i=n;i;--i)if(a[i]){
		++cnt;
		for(int j=1;j*j<=i;++j){
			if(i!=i/j*j)continue;
			a[j]^=1,a[i/j]^=(i/j!=j);
		}
	}
	if(cnt<=k){
		for(int i=2;i<=n;++i)cnt=(ll)cnt*i%mod;
		cout<<cnt;
		return 0;
	}
	inv[1]=1;
	for(int i=2;i<=n;++i)inv[i]=(ll)inv[mod%i]*(mod-mod/i)%mod;
	f[n]=1;
	for(int i=n-1;i>k;--i)f[i]=(ll)inv[i]*((((ll)n+(ll)(n-i)*f[i+1]%mod))%mod)%mod;
	for(int i=cnt;i>k;--i){
		ans+=f[i];
		if(ans>=mod)ans-=mod;
	}
	ans+=k;
	if(ans>=mod)ans-=mod;
	for(int i=2;i<=n;++i)ans=(ll)ans*i%mod;
	cout<<ans;
	return 0;
}

2018.11.01 bzoj4872: [Shoi2017]分手是祝愿(期望dp)的更多相关文章

  1. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  2. 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP

    [题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...

  3. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  4. BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP

    显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...

  5. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  6. Bzoj4872: [Shoi2017]分手是祝愿

    题面 Bzoj Sol 首先从大向小,能关就关显然是最优 然后 设\(f[i]\)表示剩下最优要按i个开关的期望步数,倒推过来就是 \[ f[i]=f[i-1]*i*inv[n]+f[i+1]*(n- ...

  7. 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP

    题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...

  8. BZOJ4872: [Shoi2017]分手是祝愿【概率期望DP】【思维好题】

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  9. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

随机推荐

  1. 【转】 mysql 数据优化

    数据库优化离不开索引,如何理解索引? ---------------------------------------------------------------------------- 可以参考 ...

  2. 文本工具 TextUtils 字符串

    常用方法: isEmpty:判断字符串是否为空值 getTrimmedLength:获取字符串去除头尾空格之后的长度 isDigitsOnly:判断字符串是否全部由数字组成 ellipsize:如果字 ...

  3. python之集合【set】

    初学python,今天晚上学习了set,做下set的总结,set的中文名也就是[集合],set的总结分为两部分,第一部分是set的创建,第二部分是set的操作,也就是set的功能:set的特点是无序的 ...

  4. Java项目学习笔记(一)

    2017/2/27 一.target属性 <a>标签的target属性规定在什么地方打开该链接文档. 1.打开新窗口,将文档重定向到一个单独的窗口. <a href="a. ...

  5. 在eclipse上写代码的时候,tomcat突然不能用了,重启都是闪一下就关了

    严重: A child container failed during start 严重: The required Server component failed to start so Tomca ...

  6. ROS与深度相机入门教程-在ROS使用kinect v1摄像头

    ROS与深度相机入门教程-在ROS使用kinect v1摄像头 说明: 介绍在ros安装和使用kinect v1摄像头 介绍freenect包 安装驱动 deb安装 $ sudo apt-get in ...

  7. BOM DOM jQuery

    . BOM . location相关 . location.href . location.href="http://www.sogo.com" . location.reload ...

  8. PAT 1061 判断题(15)(代码)

    1061 判断题(15 分) 判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分. 输入格式: 输入在第一行给出两个不超过 100 的正整数 N 和 M,分别是学生人数 ...

  9. PAT 1022 D进制的A+B (20)(20 分)

    输入两个非负10进制整数A和B(<=2^30^-1),输出A+B的D (1 < D <= 10)进制数. 输入格式: 输入在一行中依次给出3个整数A.B和D. 输出格式: 输出A+B ...

  10. hdu 1558 (线段相交+并查集) Segment set

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1558 题意是在坐标系中,当输入P(注意是大写,我当开始就wa成了小写)的时候输入一条线段的起点坐标和终点坐 ...