James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser than the box topology; these three topologies are all different if \(J\) is infinite.
Proof: a) Prove the uniform topology is finer than the product topology.
Analysis: Look inside an open ball in the product topology for an open ball in the uniform topology and then apply Lemma 20.2. It should be also noted that the product topology on \(\mathbb{R}^J\) has each of its coordinate space assigned the standard topology, which is consistent with both topologies induced from the two metrics \(d\) and \(\bar{d}\) according to example 2 in this section and Theorem 20.1.
According to the second part of Theorem 19.2, let \(\prod_{\alpha \in J} B_{\alpha}\) be an arbitrary basis element for the product topology on \(\mathbb{R}^J\), where only a finite number of \(B_{\alpha}\)s are open intervals in \(\mathbb{R}\) and not equal to \(\mathbb{R}\). Let the indices for these \(B_{\alpha}\)s be \(\{\alpha_1, \cdots, \alpha_n\}\) and for all \(i \in \{1, \cdots, n\}\), \(B_{\alpha_i} = (a_i, b_i)\). Then for all \(\vect{x} \in \prod_{\alpha \in J} B_{\alpha}\) and for all \(\alpha \in J\), \(x_{\alpha} \in B_{\alpha}\). Specifically, for all \(i \in \{1, \cdots, n\}\), \(x_{\alpha_i} \in B_{\alpha_i}\). Let \(\varepsilon_{\alpha_i} = \min \{ x_{\alpha_i} - a_i, b_i - x_{\alpha_i} \}\) and \(\varepsilon = \min_{1 \leq i \leq n} \{\varepsilon_{\alpha_1}, \cdots, \varepsilon_{\alpha_n}\}\). Then we’ll check the open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) in \(\mathbb{R}^J\) with the uniform topology is contained in the basis element \(\prod_{\alpha \in J} B_{\alpha}\).
For all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), \(\bar{\rho}(\vect{x}, \vect{y}) < \varepsilon\), i.e. \(\sup_{\forall \alpha \in J} \{\bar{d}(x_{\alpha}, y_{\alpha})\} < \varepsilon\). Therefore, for all \(i \in \{1, \cdots, n\}\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon\). Note that when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\), which is not what we desire. Instead, we need to define the open ball’s radius as \(\varepsilon' = \min\{\varepsilon, 1\}\). Then we have for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon')\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) = d(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon'\), i.e. \(y_{\alpha_i} \in (x_{\alpha_i} - \varepsilon', x_{\alpha_i} + \varepsilon') \subset B_{\alpha_i}\). For other coordinate indices \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\), because \(B_{\alpha} = \mathbb{R}\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon', x_{\alpha} + \varepsilon') \subset B_{\alpha}\) holds trivially.
Therefore, the uniform topology is finer than the product topology.
b) Prove the uniform topology is strictly finer than the product topology, when \(J\) is infinite.
When \(J\) is infinite, for an open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) with \(\varepsilon \in (0, 1]\), there are infinite number of coordinate components comprising this open ball which are not equal to \(\mathbb{R}\). Therefore, there is no basis element for the product topology which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
c) Prove the box topology is finer than the uniform topology.
For any basis element \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) for the uniform topology, when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), any basis element for the box topology containing this \(\vect{y}\) is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
When \(\varepsilon \in (0, 1]\), \(\bar{d}\) is equivalent to \(d\) on \(\mathbb{R}\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), we have
\[
\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \sup_{\alpha \in J} \{ d(x_{\alpha}, y_{\alpha}) \} < \varepsilon.
\]
Therefore, for all \(\alpha \in J\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\). Then we may tend to say that \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is a basis element for the box topology containing \(\vect{y}\), which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). However, this is not true. Because \(\vect{y}\) can be thus selected such that as \(\alpha\) changes in \(J\), \(\bar{d}(x_{\alpha}, y_{\alpha})\) can be arbitrarily close to \(\varepsilon\), which leads to \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \varepsilon\). This makes \(\vect{y} \notin B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is not contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). Such example can be given for \(\mathbb{R}^{\omega}\), where we let \(\vect{y} = \{y_n = x_n + \varepsilon - \frac{\varepsilon}{n}\}_{n \in \mathbb{Z}_+}\). When \(n \rightarrow \infty\), \(\bar{d}(x_n, y_n) \rightarrow \varepsilon\).
With this point clarified, a smaller basis element should be selected for the box topology, such as \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2})\). For all \(\vect{y}\) in this basis element, \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} \leq \frac{\varepsilon}{2} < \varepsilon\). Hence \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2}) \subset B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and the box topology is finer than the uniform topology.
Remark: The proof in the book for this part inherently adopts the definition of open set via topological basis introduced in section 13.
d) Prove the box topology is strictly finer than the uniform topology, when \(J\) is infinite.
Analysis: Because the open ball in the uniform topology sets an upper bound on the dimension of each coordinate component, it can be envisioned that if we construct a basis element for the box topology with the dimension for each coordinate component approaching to zero, it cannot cover any open ball in the uniform topology with a fixed radius no matter how small it is.
Let’s consider the case in \(\mathbb{R}^{\omega}\). Select a basis element for the box topology as \(\prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\) with \((c > 0)\). Then for all \(\varepsilon > 0\), there exists \(\vect{y}_0 \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\) such that \(\vect{y}_0 \notin \prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). For example, we can select \(\vect{y}_0 = (x_n + \frac{\varepsilon}{2})_{n \geq 1}\). Then there exists an \(n_0 \in \mathbb{Z}_+\) such that when \(n > n_0\), \(\frac{c}{n} < \frac{\varepsilon}{n}\) and \(y_n \notin (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). Hence, the box topology is strictly finer than the uniform topology.
James Munkres Topology: Theorem 20.4的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- Announcing Microsoft Research Open Data – Datasets by Microsoft Research now available in the cloud
The Microsoft Research Outreach team has worked extensively with the external research community to ...
- [SimplePlayer] 6. 音频同步
音频的同步并不需要我们在程序实现.在设置好声道.采样率.音频格式后,程序只需要保证能一直提供音频数据就行,其余工作基本都由声卡实现.
- Flask初识
一.Flask初识 1.Flask介绍 Flask是一个使用 Python 编写的轻量级 Web 应用框架.其 WSGI 工具箱采用 Werkzeug服务 ,模板引擎则使用 Jinja2 .Flask ...
- 作业二:Git的安装与使用
作业的要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/2097 分布式版本控制系统Git的安装与使用 1.下载安装配置用户名 ...
- Hdoj 2149.Public Sale 题解
Problem Description 虽然不想,但是现实总归是现实,Lele始终没有逃过退学的命运,因为他没有拿到奖学金.现在等待他的,就是像FarmJohn一样的农田生涯. 要种田得有田才行,Le ...
- 网页换肤,模块换肤,jQuery的Cookie插件使用(转)
具体效果如下: 第一次加载如下图: 然后点击天蓝色按钮换成天蓝色皮肤如下图: 然后关闭网页重新打开或者在打开另一个网页如下图: 因为皮肤用Cookie保存了下来,所以不会重置 具体的实现代码如下: & ...
- JS学习笔记Day16
一.匀速运动 保证速度不让用户提供,将速度写到函数中 speed = target-obj.offsetLeft>0 ? 正速度 :负速度 二.缓冲运动 var speed=(target-ob ...
- Spring MVC 学习总结(一)——MVC概要与环境配置(IDea与Eclipse示例)
一.MVC概要 MVC是模型(Model).视图(View).控制器(Controller)的简写,是一种软件设计规范,用一种将业务逻辑.数据.显示分离的方法组织代码,MVC主要作用是降低了视图与业务 ...
- python 爬虫之beautifulsoup(bs4)环境准备
环境准备: bs4安装方法:https://blog.csdn.net/Bibabu135766/article/details/81662981 requests安装方法:https://blog. ...
- 集成学习—boosting和bagging
集成~bagging~权值~组合~抽样~样例~基本~并行 一.简介 集成学习通过构建并结合多个学习器来完成学习任务,常可获得比单一学习器显著优越的泛化性能 根据个体学习器的生成方式,目前的集成学习方法 ...