import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2 else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY,staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  2. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  3. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  6. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  7. 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  8. 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例

    import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...

  9. 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别

    import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...

随机推荐

  1. [Note]Splay学习笔记

    开个坑记录一下学习Splay的历程. Code 感谢rqy巨佬的代码,让我意识到了Splay可以有多短,以及我之前的Splay有多么的丑... int fa[N], ch[N][2], rev[N], ...

  2. MYSQL导入CSV格式文件数据执行提示错误(ERROR 1290): The MySQL server is running with the --secure-file-priv option so it cannot execute this statement.

    MYSQL导入CSV格式文件数据执行提示错误(ERROR 1290): The MySQL server is running with the --secure-file-priv option s ...

  3. PTPX-功耗分析总结

    使用PrimeTime PX进行功耗分析有两种:一种是平均功耗的分析Averaged power analysis,一种是Time-based power analysis.   电路的功耗主要有两种 ...

  4. td标签内容:换行和不换行设置

    td标签内容:换行和不换行设置 固定td内容不换行:<td style="white-space:nowrap">内容</td>或<td nowrap ...

  5. SQL查询语句的执行

    执行过程 连接器 - 管理连接,权限验证 查询缓存 - 命中缓存直接返回结果 分析器 - 词法分析 ,语法分析 优化器 - 分析执行计划,选择最优的执行计划 执行器 - 操作存储引擎接口,返回结果 不 ...

  6. Docker - 命令 - docker image

    概述 docker 客户端操控 镜像 1. 分类 概述 1 简单对 命令 做一些分类 分类 查看 ls inspect history 与 dockerhub 交互 pull push 导出 & ...

  7. A. DZY Loves Chessboard

    DZY loves chessboard, and he enjoys playing with it. He has a chessboard of n rows and m columns. So ...

  8. mysql开启远程访问及相关权限控制

    开启mysql远程访问: 授予用户user 密码 passwd 所有权限 所有主机IP可访问 授权语句:Grant <权限> on 表名[(列名)] to 用户 With grant op ...

  9. jq的 on 事件委托 导致多次执行问题

    解除 这个元素 在 父级上的 click 事件委托$(msg.fatherDiv).off('click','.fangdaimg_fn2'); click事件$('.fangdaimg_fn2'). ...

  10. Flask 学习之 路由

    一.路由的基本定义 # 指定访问路径为 demo1 @app.route('/demo1') def demo1(): return 'demo1' 二.常用路由设置方式 @app.route('/u ...