吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2 else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY,staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例
import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...
- 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...
随机推荐
- codeforces 1245D(最小生成树)
题面链接:https://codeforces.com/problemset/problem/1245/D 题意大概是给你一些城市的坐标,可以在城市中建立发电站,也可以让某个城市和已经建好发电站的城市 ...
- Redis如果内存满了怎么办?
Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小. 1.通过配置文件配置 ...
- 一段讯飞、百度等语音识别API无法识别的语音最终解决办法
最近在做语音识别.字幕扒词相关的工作,遇到了一段录音(https://download.csdn.net/download/u014220286/12169183,各位有兴趣的可以下载下来试试),音质 ...
- 线性筛-prime,强大O(n)
和朴素的素数筛法一样,flag数组,记录x是否为素数 flag[x]=0,x为合数 falg[x]=1,x为素数 flag[1],无定义 其核心思想是,用x筛除与之差异最小的y,达到时间上O(n)的目 ...
- EVE-NG镜像模板资源占用统计
转:http://www.emulatedlab.com/forum.php?mod=viewthread&tid=432&extra=page%3D1 EVE Image fold ...
- 网站复制工具:HTTrack
HTTrack简介: HTTrack是Kali中内置的工具,主要用于克隆网站.渗透测试人员可以利用它来在自主可控制的环境中查看该网站的完整内容:所有离线文件.同时可以利用该网站的副本来开发假冒的钓鱼网 ...
- C语言实例-大小写字母间的转换
初学C语言都会遇到要求写大小写转换的题目 这类题目主要通过ASCII(美国信息交换标准代码)码差值实现,A对应ASCII码十进制数字是65,a对应ASCII码十进制数字是97,即大小写字母之间ASCI ...
- 瀑布流无限加载infinitescroll插件与masonry插件使用
masonry官网地址http://masonry.desandro.com/,infinitescroll官网地址http://www.infinite-scroll.com/ 无限滚动原理:无限滚 ...
- 使用ltp4j碰到Can't find dependent libraries报错信息的问题解决
项目中使用了哈工大的自然语言处理模块ltp4j,使用idea工具集成到项目中之后,在本机运行没有问题,一切正常.打成war包,部署到服务器上,使用的时候报错Can't find dependent l ...
- 利用ZotFile对Zotero中的文献进行整理
1.安装ZotFile插件 *** 以后补充 *** 2.配置ZotFile 配置 3.整理操作 (1)将文件拖进Zotero软件相应的目录(自己创建) (2)查看文件位置 (未整理之前) (3)整理 ...