Again Prime? No Time. UVA - 10780(质因子分解)
m^k就是让m的每个质因子个数都增加了k倍
求m的质因子 在n!中增加了多少倍就好了,因为m^k 表示每一个质因子增加相同的倍数k 所以我们需要找到增加倍数最小的那个。。短板效应 其它质因子多增加的倍数都合并一下 就是n!的另一个因数了

其他的乘到一起 就是N了。。。
因为n!的很大。。但n!是从1到n的乘积 所以从1到n的这些数所包含的质因子P1 P2 P3 ```Pc 个数的和就是 n!中对应质因子的个数。。
我这种蒟蒻就只适合做模板图论。。。。
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL primes[maxn], vis[maxn];
int base1[maxn], mi1[maxn], mi2[maxn];
int n, m;
int ans = ; void init()
{
mem(vis, );
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} int main()
{
int T, kase = ;
init();
cin>> T;
while(T--)
{
mem(base1, );
mem(mi1, );
mem(mi2, );
int res;
cin>> m >> n;
int cnt = ; for(int i=; i<ans && primes[i] * primes[i] <= m; i++)
{
int cnt2 = ;
while(m % primes[i] == )
{
m /= primes[i];
cnt2++;
}
if(cnt2 > )
{
base1[cnt++] = primes[i];
mi2[primes[i]] += cnt2;
}
}
if(m > )
{
base1[cnt++] = m;
mi2[m] += ;
} for(int j=; j<=n; j++)
{
res = j; for(int i=; i<cnt; i++)
{ int cnt2 = ;
while(res % base1[i] == )
{
res /= base1[i];
cnt2++;
}
if(cnt2 > )
{ mi1[base1[i]] += cnt2;
}
}
} int minn = INF;
for(int i=; i<cnt; i++)
{
minn = min(minn, mi1[base1[i]]/mi2[base1[i]]);
}
printf("Case %d:\n",++kase);
if(minn)
cout<< minn <<endl;
else
cout<< "Impossible to divide" <<endl;
}
return ; }
Again Prime? No Time. UVA - 10780(质因子分解)的更多相关文章
- UVA 10780 Again Prime No Time.(数学)
给定两个整数m和n,求最大的k使得m^k是n!的约数 对m质因子分解,然后使用勒让德定理求得n!包含的质数p的阶数,min(b[i] / a[i])即为结果k, 若为0无解 #include<c ...
- Lightoj-1356 Prime Independence(质因子分解)(Hopcroft-Karp优化的最大匹配)
题意: 找出一个集合中的最大独立集,任意两数字之间不能是素数倍数的关系. 思路: 最大独立集,必然是二分图. 最大数字50w,考虑对每个数质因子分解,然后枚举所有除去一个质因子后的数是否存在,存在则建 ...
- P2043 质因子分解
P2043 质因子分解 题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中 ...
- P2043 质因子分解(阶乘的质因数分解)
P2043 质因子分解 对$n!$进行质因数分解的一种高效算法 首先,筛出$<=n$的素数 蓝后,对$n$反复除以$prime$,同时$cnt+=n/prime$ $n!$中含有该$prime$ ...
- LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数
题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function PDF (English) Statistics Forum ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- A 洛谷 P3601 签到题 [欧拉函数 质因子分解]
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题
题目链接:http://poj.org/problem?id=1845 定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元. 为什么要有乘法逆元呢? 当我们要求(a/b) mod p的 ...
- luogu P2043 质因子分解
题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中间用一个空格隔开.表示N ...
随机推荐
- MySQL默认INFORMATION_SCHEMA,MySQL,TEST三个数据库用途(转)
本文简要说明了MySQL数据库安装好后自带的INFORMATION_SCHEMA,MySQL,TEST三个数据库的用途. 第一个数据库INFORMATION_SCHEMA:提供了访问数据库元数据的方式 ...
- EasyUI-Tree的使用
在web开发中,树是比较常见的东西.以前用过zTree,也用过EasyUI-Tree,过了好久后发现都忘记怎么用了. 这几天重新回顾了EasyUI-tree的使用,在此将相关知识点记录 ...
- 5、JVM的监控与分析工具
一.JPS(虚拟机进程监控工具) 二.jstat:虚拟机统计信息监视工具 例子:jstat -gcutil 16478 s0:区域占比2.33%: s1占比0.00%: E:伊甸园区 : O:老年区: ...
- EZ 2017 12 30 2018noip第二次膜你赛
去年的比赛了,然而今天才改好. 总体难度适中,有大佬AK. 主要是自己SB第二题没想出来,然后又是可怜的100来分. T1 一道二分+数学的题目. 我们可以二分叫的次数,然后用公式(等差数列,公差都是 ...
- python 实现分治法的几个例子
分治法所能解决的问题一般具有以下几个特征: 1) 该问题的规模缩小到一定的程度就可以容易地解决 2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质. 3) 利用该问题分解出的子 ...
- MySQL清理慢查询日志slow_log的方法
一.清除原因 因为之前打开了慢查询,导致此表越来越大达到47G,导致磁盘快被占满,使用xtrabackup进行备份的时候文件也超大. mysql> show variables like 'lo ...
- ElasticSearch入门 第三篇:索引
这是ElasticSearch 2.4 版本系列的第三篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch ElasticSearch入门 第二篇:集群配置 E ...
- Panorama——H5实现全景图片原理
前言 H5是怎么实现全景图片播放呢? 正文 全景图的基本原理即 "等距圆柱投影",这是一种将球体上的各个点投影到圆柱体的侧面上的一种投影方式,投影后再展开就是一张 2:1 的矩形图 ...
- 命令行启用IIS Express
我们在调试WEB程序的时候可以把本地web程序挂载到本地IIS,然后访问程序,通过附加进程的方式(w3wp)来调试程序(个人非常喜欢的一种调试方式),还有一种比较传统的方式就是通过VS自带的F5来执行 ...
- nodejs 监控代码变动实现ftp上传
被动模式下 //https://www.npmjs.com/package/watch //文件同步功能 var watch = require('watch'); var path = requir ...