正解:cdq分治

解题报告:

传送门! 长得有点像双倍经验还麻油仔细看先放上来QwQ!

这题首先想到的就直接做逆序对,然后记录每个点的贡献,删去就减掉就好

但是仔细一想会发现布星啊,如果有一对逆序对的两个点都被删了岂不是就减重了嘛

那就再加上一个值

这个值是什么呢,就是满足逆序对且逆序对的另一个数的删除时间小于这个数的数对的个数(,,,有点绕口,,,但应该能get,,,?

然后就做完了,就是个cdq分治

但是这么想484有点复杂,,,?主要是实现起来想想它要实现哪些东西就jio得代码估计会比较长,就不想打嘛

那就再转化一下题意

把删去操作想成插入操作

那就是从后往前操作,每次会插入一些数,那这个数的贡献就是满足插入时间小于它且满足逆序对的数对的个数

这样就只要做一遍cdq就好了(其实核心思想是一样的,,,只是私信jio得这个方法的代码应该好打一些w

然后等下放代码QAQ!

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define ll long long
#define rg register
#define gc getchar()
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(rg int i=x;i<=y;++i)
#define my(i,x,y) for(rg ll i=x;i>=y;--i) const ll N=1e5+;
struct ques{ll pos,tim,num,as;}q[N],t[N];
bool is_del[N];
ll n,m,sum,q_cnt,del[N],p[N],tr[N]; il ll read()
{
rg char ch=gc;rg int x=;rg bool y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc; if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void updat(ll x,ll y){while(x<=n)tr[x]+=y,x+=lowbit(x);}
il ll query(ll x){ll tmp=;while(x)tmp+=tr[x],x-=lowbit(x);return tmp;}
il bool cmp(ques gd,ques gs){return gd.tim<gs.tim;}
il bool cmq(ques gd,ques gs){return gd.pos<gs.pos;}
il void solv(ll l,ll r)
{
if(l>=r)return;ll mid=(l+r)>>,num=;solv(l,mid);solv(mid+,r);sort(q+l,q+r+,cmq);
rp(i,l,r)if(q[i].tim<=mid)updat(q[i].num,),++num;else q[i].as+=num-query(q[i].num);
rp(i,l,r)if(q[i].tim<=mid)updat(q[i].num,-);
my(i,r,l)if(q[i].tim<=mid)updat(q[i].num,);else q[i].as+=query(q[i].num);
rp(i,l,r)if(q[i].tim<=mid)updat(q[i].num,-);
} int main()
{
n=read();m=read();rp(i,,n)p[read()]=i;rp(i,,m)is_del[del[i]=read()]=;rp(i,,n)if(!is_del[i])q[++q_cnt]=(ques){p[i],q_cnt,i,};
my(i,m,)q[++q_cnt]=(ques){p[del[i]],q_cnt,del[i],};
solv(,n);sort(q+,q++n,cmp);rp(i,,n)q[i].as+=q[i-].as;my(i,n,n-m+)printf("%lld\n",q[i].as);
return ;
}

这是代码!(树状数组真的比线段树好打这——么多!爱了爱了TT

洛谷P3157 动态逆序对 [CQOI2011] cdq分治的更多相关文章

  1. 洛谷P1393 动态逆序对(CDQ分治)

    传送门 题解 听别人说这是洛谷用户的双倍经验啊……然而根本没有感觉到……因为另外的那题我是用树状数组套主席树做的……而且莫名其妙感觉那种方法思路更清晰(虽然码量稍稍大了那么一点点)……感谢Candy大 ...

  2. 【Luogu1393】动态逆序对(CDQ分治)

    [Luogu1393]动态逆序对(CDQ分治) 题面 题目描述 对于给定的一段正整数序列,我们定义它的逆序对的个数为序列中ai>aj且i < j的有序对(i,j)的个数.你需要计算出一个序 ...

  3. 【洛谷3157】[CQOI2011] 动态逆序对(CDQ分治)

    点此看题面 大致题意: 给你一个从\(1\)到\(n\)的排列,问你每次删去一个元素后剩余的逆序对个数. 关于\(80\)分的树套树 为了练树套树,我找到了这道题目. 但悲剧的是,我的 线段树套\(T ...

  4. luogu P3157 [CQOI2011]动态逆序对(CDQ分治)

    题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...

  5. bzoj3295: [Cqoi2011]动态逆序对(cdq分治)

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  6. bzoj 3295 [Cqoi2011]动态逆序对(cdq分治,BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3295 [题意] n个元素依次删除m个元素,求删除元素之前序列有多少个逆序对. [思路] ...

  7. [luogu3157][bzoj3295][CQOI2011]动态逆序对【cdq分治+树状数组】

    题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...

  8. BZOJ3295 [Cqoi2011]动态逆序对 【CDQ分治】

    题目 对于序列A,它的逆序对数定义为满足i 输入格式 输入第一行包含两个整数n和m,即初始元素的个数和删除的元素个数.以下n行每行包含一个1到n之间的正整数,即初始排列.以下m行每行一个正整数,依次为 ...

  9. 【题解】动态逆序对 [CQOI2011] [P3157] [BZOJ3295] [P1393]

    [题解]动态逆序对 [CQOI2011] [P3157] [BZOJ3295] [P1393] 水一水QAQ 题目链接: \([P3157]\) \([BZOJ3295]\) [题目描述] 对于一个序 ...

随机推荐

  1. flask获取传入参数的两种方式

    #coding=utf-8 from flask import Flask from flask import request app = Flask(__name__) @app.route(&qu ...

  2. 用c语言如何在数字前自动补0

    一: #include <stdio.h>int main(){ long a=3,b=4,c=15; printf("......."a,b,c);return 0; ...

  3. lua中的字符串操作(模式匹配)

    (一). 模式匹配函数在string库中功能最强大的函数是:string.find(字符串查找)string.gsub(全局字符串替换)string.gfind(全局字符串查找)string.gmat ...

  4. C#实现新建文件并写入内容

    using System; using System.IO; namespace ConsoleApplication1 { class Program { static void Main(stri ...

  5. 原生js--异步请求

    1.异步请求的方法: iframe.script.XMLHttpRequest.comet(服务器端发起) 2.XMLHttpRequest request = new XMLHttpRequest( ...

  6. 【Studio】解决格式化时,注释部分没有缩进的问题

    android studio默认代码格式化(默认Ctrl+Alt+L),是让注释从每行最左边开始显示,比如这样: 我个人喜欢注释也要缩进对齐.其实这个需要自己设置,打开studio的设置,依次找 Se ...

  7. 从零开始学习Hadoop--第4章 序列化(转载)

    作者对序列化的描述浅显易懂!(https://www.douban.com/note/313096752/) 1. 序列化从头说 在面向对象程序设计中,类是个很重要的概念.所谓“类”,可以将它想像成建 ...

  8. sencha touch 评分扩展

    原版 :https://market.sencha.com/extensions/sencha-touch-2-rating-star-field 效果: 我的改造版(只是类名变了): Ext.def ...

  9. ++ fatal error C1083: 无法打开预编译头文件:“.\Debug\router.pch”

    一.出现此错误首先检查:stdafx.cpp文件上右键——属性,预编译头选“创建”,其它cpp选“使用”. 二.如果是采用这样的设置,还是有错误,重新生成解决方案,重新调试. 三.实在不行的话,步骤/ ...

  10. 剑指offer题目记录

    1.如下为类型CMyString的声明,请为该类型添加赋值运算符函数. class CMyString { public: CMyString(char* pData = NULL); CMyStri ...