python使用bs4爬取boss静态页面
思路:
1、将需要查询城市列表,通过城市接口转换成相应的code码
2、遍历城市、职位生成url
3、通过url获取列表页面信息,遍历列表页面信息
4、再根据列表页面信息的job_link获取详情页面信息,将需要的信息以字典data的形式存在列表datas里
5、判断列表页面是否有下一页,重复步骤3、4;同时将列表datas一直传递下去
6、一个城市、职位url爬取完后,将列表datas接在列表datas_list后面,重复3、4、5
7、最后将列表datas_list的数据,遍历写在Excel里面
知识点:
1、将response内容以json形式输出,解析json并取值
2、soup 的select()和find_all()和find()方法使用
3、异常Exception的使用
4、wldt创建编辑Excel的使用
import requests, time, xlwt
from bs4 import BeautifulSoup class MyJob():
def __init__(self, mycity, myquery):
self.city = mycity
self.query = myquery
self.list_url = "https://www.zhipin.com/job_detail/?query=%s&city=%s&industry=&position="%(self.query, self.city)
self.datas = []
self.header = {
'authority': 'www.zhipin.com',
'method': 'GET',
'scheme': 'https',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'zh-CN,zh;q=0.9',
'cache-control': 'max-age=0',
'cookie': 'lastCity=101210100;uab_collina=154408714637849548916323;toUrl=/;c=1558272251;g=-;l=l=%2Fwww.zhipin.com%2Fuser%2Flogin.html&r=; Hm_lvt_194df3105ad7148dcf2b98a91b5e727a=1555852331,1556985726,1558169427,1558272251; __a=40505844.1544087205.1558169426.1558272251.41.14.4.31; Hm_lpvt_194df3105ad7148dcf2b98a91b5e727a=1558272385',
'referer': 'https://www.zhipin.com/?ka=header-logo',
'upgrade-insecure-requests': '',
'user-agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36'
} #将城市转化为code码
def get_city(self,city_list):
city_url = "https://www.zhipin.com/wapi/zpCommon/data/city.json" #获取城市
json = requests.get(city_url).json()
zpData = json["zpData"]["cityList"]
list = []
for city in city_list :
for data_sf in zpData:
for data_dq in data_sf["subLevelModelList"]:
if city == data_dq["name"]:
list.append(data_dq["code"])
return list #获取所有页内容
def get_job_list(self, url, datas):
print(url)
html = requests.get(url, headers=self.header).text
soup = BeautifulSoup(html, 'html.parser')
jobs = soup.select(".job-primary")
for job in jobs:
data = {}
# 招聘id
data["job_id"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("a").get("data-jobid")
# 招聘链接
data["job_link"] = "https://www.zhipin.com" + job.find_all("div", attrs={"class": "info-primary"})[0].find("a").get("href")
# 招聘岗位
data["job_name"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-title"}).get_text()
# 薪资
data["job_red"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("span", attrs={"class": "red"}).get_text()
# 地址 #工作年限 #学历
data["job_address"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("p").get_text().split(" ")
# 企业链接
data["job_company_link"] = job.find_all("div", attrs={"class": "info-company"})[0].find("a").get("href")
# 企业信息
data["job_company"] = job.find_all("div", attrs={"class": "info-company"})[0].find("p").get_text().split(" ")
# boss链接
data["job_publis_link"] = job.find_all("div", attrs={"class": "info-publis"})[0].find("img").get("src")
# boos信息
data["job_publis"] = job.find_all("div", attrs={"class": "info-publis"})[0].find("h3").get_text().split(" ")
time.sleep(5)
self.get_job_detail(data) # 获取job详情页内容
print(data)
datas.append(data) # 将某条job添加到datas中,直到将当前页添加完 try:
next_url = soup.find("div", attrs={"class": "page"}).find("a", attrs={"class": "next"}).get("href")
#if next_url[-1] =="3": # 第二页自动抛异常
if next_url in "javascript:;": # 最后一页自动抛异常
raise Exception()
except Exception as e:
print("最后一页了;%s" % e)
return datas # 返回所有页内容
else:
time.sleep(5)
next_url = "https://www.zhipin.com" + next_url
self.get_job_list(next_url, datas)
return datas # 返回所有页内容 #获取详情页内容
def get_job_detail(self, data):
print(data["job_link"])
html = requests.get(data["job_link"], headers=self.header).text
soup = BeautifulSoup(html, 'html.parser')
# 招聘公司
data["detail_content_name"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "name"}).get_text()
# 福利
data["detail_primary_tags"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-tags"}).get_text().strip()
# 招聘岗位
data["detail_primary_name"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("h1").get_text()
# 招聘状态
data["detail_primary_status"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-status"}).get_text()
# 薪资
data["detail_primary_salary"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("span", attrs={"class": "salary"}).get_text()
# 地址 #工作年限 #学历
data["detail_primary_address"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("p").get_text()
# 工作地址
data["detail_content_address"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "location-address"}).get_text()
# 职位描述
data["detail_content_text"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "text"}).get_text().strip().replace(";", "\n")
# boss名字
data["detail_op_name"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("h2", attrs={"class": "name"}).get_text()
# boss职位
data["detail_op_job"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("p", attrs={"class": "gray"}).get_text().split("·")[0]
# boss状态
data["detail_op_status"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("p", attrs={"class": "gray"}).get_text().split("·")[1] #将获取的数据写入Excel
def setExcel(self, datas_list):
book = xlwt.Workbook(encoding='utf-8')
table = book.add_sheet("boss软件测试")
table.write(0, 0, "编号")
table.write(0, 1, "招聘链接")
table.write(0, 2, "招聘岗位")
table.write(0, 3, "薪资")
table.write(0, 4, "地址")
table.write(0, 5, "企业链接")
table.write(0, 6, "企业信息")
table.write(0, 7, "boss链接")
table.write(0, 8, "boss信息")
table.write(0, 9, "detail详情")
i = 1
for data in datas_list:
table.write(i, 0, data["job_id"])
table.write(i, 1, data["job_link"])
table.write(i, 2, data["job_name"])
table.write(i, 3, data["job_red"])
table.write(i, 4, data["job_address"])
table.write(i, 5, data["job_company_link"])
table.write(i, 6, data["job_company"])
table.write(i, 7, data["job_publis_link"])
table.write(i, 8, data["job_publis"]) table.write(i, 10, data["detail_content_name"])
table.write(i, 11, data["detail_primary_name"])
table.write(i, 12, data["detail_primary_status"])
table.write(i, 13, data["detail_primary_salary"])
table.write(i, 14, data["detail_primary_address"])
table.write(i, 15, data["detail_content_text"])
table.write(i, 16, data["detail_op_name"])
table.write(i, 17, data["detail_op_job"])
table.write(i, 18, data["detail_op_status"])
table.write(i, 19, data["detail_primary_tags"])
table.write(i, 20, data["detail_content_address"])
i += 1
book.save(r'C:\%s_boss软件测试.xls' % time.strftime('%Y%m%d%H%M%S'))
print("Excel保存成功") if __name__ == '__main__':
city_list = MyJob("","").get_city(["杭州"])
query_list = ["软件测试", "测试工程师"]
datas_list = []
for city in city_list:
for query in query_list:
myjob = MyJob(city, query)
datas = myjob.get_job_list(myjob.list_url, myjob.datas)
datas_list.extend(datas)
myjob.setExcel(datas_list)
python使用bs4爬取boss静态页面的更多相关文章
- Python 2.7_爬取CSDN单页面博客文章及url(二)_xpath提取_20170118
上次用的是正则匹配文章title 和文章url,因为最近在看Scrapy框架爬虫 需要了解xpath语法 学习了下拿这个例子练手 1.爬取的单页面还是这个rooturl:http://blog.csd ...
- Python 2.7_爬取CSDN单页面利用正则提取博客文章及url_20170114
年前有点忙,没来的及更博,最近看爬虫正则的部分 巩固下 1.爬取的单页面:http://blog.csdn.net/column/details/why-bug.html 2.过程 解析url获得网站 ...
- python+selenium+bs4爬取百度文库内文字 && selenium 元素可以定位到,但是无法点击问题 && pycharm多行缩进、左移
先说一下可能用到的一些python知识 一.python中使用的是unicode编码, 而日常文本使用各类编码如:gbk utf-8 等等所以使用python进行文字读写操作时候经常会出现各种错误, ...
- Scrapy 爬取BOSS直聘关于Python招聘岗位
年前的时候想看下招聘Python的岗位有多少,当时考虑目前比较流行的招聘网站就属于boss直聘,所以使用Scrapy来爬取下boss直聘的Python岗位. 1.首先我们创建一个Scrapy 工程 s ...
- Python的scrapy之爬取boss直聘网站
在我们的项目中,单单分析一个51job网站的工作职位可能爬取结果不太理想,所以我又爬取了boss直聘网的工作,不过boss直聘的网站一次只能展示300个职位,所以我们一次也只能爬取300个职位. jo ...
- 大神:python怎么爬取js的页面
大神:python怎么爬取js的页面 可以试试抓包看看它请求了哪些东西, 很多时候可以绕过网页直接请求后面的API 实在不行就上 selenium (selenium大法好) selenium和pha ...
- Python爬虫《爬取get请求的页面数据》
一.urllib库 urllib是Python自带的一个用于爬虫的库,其主要作用就是可以通过代码模拟浏览器发送请求.其常被用到的子模块在Python3中的为urllib.request和urllib. ...
- python实战项目 — 使用bs4 爬取猫眼电影热榜(存入本地txt、以及存储数据库列表)
案例一: 重点: 1. 使用bs4 爬取 2. 数据写入本地 txt from bs4 import BeautifulSoup import requests url = "http:// ...
- Python爬虫之爬取慕课网课程评分
BS是什么? BeautifulSoup是一个基于标签的文本解析工具.可以根据标签提取想要的内容,很适合处理html和xml这类语言文本.如果你希望了解更多关于BS的介绍和用法,请看Beautiful ...
随机推荐
- 不间断电源(UPS)
UPS电源一般指不间断电源 UPS(Uninterruptible Power System/Uninterruptible Power Supply),即不间断电源,是将蓄电池(多为铅酸免维护蓄电池 ...
- ERROR 1292 (22007): Truncated incorrect DOUBLE value: 'asfsda1'
mysql> UPDATE financial_sales_order SET ASSIGN_TIME = '2018-05-02 00:00:00' where CUSTOMER_ID=354 ...
- ERROR 1146 (42S02): Table 'mysql.servers' doesn't exist
MySQL版本:mysql5.7.21 修改用户权限,刷新权限表,报1146 mysql> flush privileges; ERROR 1146 (42S02): Table 'mysql. ...
- ORACLE 收缩表空间的数据文件
http://blog.itpub.net/29345367/viewspace-1816427/ 方法一: 在实际的应用中经常会遇到TRUNCATE或者DELETE表中的数据后发现表空间并没有将空间 ...
- python+selenium 滑动滚动条的操作
工作中碰到一种情况就是,要定位的元素需要滚动条滑到下方后才可以显示出来. 这种情况下,就要先滑动滚动条,再定位元素. 那么滑动滚动条我以前记录了appium中的操作,那么,selenium中该如何操作 ...
- PHP常用工具函数之手机号相关
1.手机号正确与否判定 //测试手机号 $phone = '17777777777'; $pattern = '/^1[356789]\d{9}$/'; $is = preg_match($patte ...
- Add hatch to bar plot
function applyhatch(h,patterns,colorlist) %APPLYHATCH Apply hatched patterns to a figure % APPLYHATC ...
- Linux 中设置进程通过 systemctl 启动
对于某些脚本或需要启动命令的程序,可以通过创建 xx.service 服务文件来使用 systemctl 控制. 例如,对于 docker-compose,其后台启动且忽略输出信息的命令为: $ no ...
- 浅谈JSONObject解析JSON数据
我们在做jmeter接口测试时能会用beanshell断言,一般都会将返回值转成JSONObject对象进行处理.本文选取较为复杂json格式数据,也将适用于java接口测试. JSON数据 { &q ...
- hive拉链表以及退链例子笔记
拉链表设计: 在企业中,由于有些流水表每日有几千万条记录,数据仓库保存5年数据的话很容易不堪重负,因此可以使用拉链表的算法来节省存储空间. 例子: -- 用户信息表; 采集当日全量数据存储到 (当日 ...