poj1830(高斯消元解mod2方程组)
题目链接:http://poj.org/problem?id=1830
题意:中文题诶~
思路:高斯消元解 mod2 方程组
有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位置对应的方程右边常数项为1,状态相同的位置对于的方程组右边的常数项为0.然后用高斯消元解一下即可.若有唯一解输出1即可,要是存在 k 个变元,则答案为 1 << k, 因为每个变元都有01两种选择嘛~
代码:
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std; const int inf = 1e9;
const int MAXN = 3e2;
int equ, var;//有equ个方程,var个变元,增广矩正行数为equ,列数为var+1,从0开始计数
int a[MAXN][MAXN];//增广矩正
int free_x[MAXN];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元个数
int x[MAXN];//解集 int Gauss(void){//返回-1表示无解,0表示有唯一解,否则返回自由变元个数
int max_r, col, k;
free_num = ;
for(k = , col = ; k < equ && col < var; k++, col++){
max_r = k;
for(int i = k + ; i < equ; i++){
if(abs(a[i][col] > abs(a[max_r][col]))) max_r = i;
}
if(a[max_r][col] == ){
k--;
free_x[free_num++] = col;//这个是变元
continue;
}
if(max_r != k){
for(int j = col; j < var + ; j++){
swap(a[k][j], a[max_r][j]);
}
}
for(int i = k + ; i < equ; i++){
if(a[i][col] != ){
for(int j = col; j < var + ; j++){
a[i][j] ^= a[k][j];
}
}
}
}
for(int i = k; i < equ; i++){
if(a[i][col] != ) return -;//无解
}
if(k < var) return var - k;//返回自由变元个数
for(int i = var - ; i >= ; i--){
x[i] = a[i][var];
for(int j = i + ; j < var; j++){
x[i] ^= (a[i][j] && x[j]);
}
}
return ;
} void solve(void){
int op = Gauss();
if(op == -) cout << "Oh,it's impossible~!!" << endl;//无解
else if(op == ) cout << << endl;
else cout << ( << op) << endl;
} int y[], z[]; int main(void){
int t, n;
string s;
cin >> t;
while(t--){
cin >> n;
equ = var = n;
for(int i = ; i < n; i++){
cin >> y[i];
}
for(int i = ; i < n; i++){
cin >> z[i];
}
for(int i = ; i < n; i++){
a[i][n] = (y[i] != z[i]);
a[i][i] = ;
x[i] = ;
}
int cnt1, cnt2;
while(cin >> cnt1 >> cnt2 && cnt1 && cnt2){
a[--cnt2][--cnt1] = ;
}
solve();
memset(a, , sizeof(a));
}
return ;
}
poj1830(高斯消元解mod2方程组)的更多相关文章
- poj1753(高斯消元解mod2方程组)
题目链接:http://poj.org/problem?id=1753 题意:一个 4*4 的棋盘,初始时上面放满了黑色或白色的棋子.对 (i, j) 位置进行一次操作后 (i, j), (i + 1 ...
- poj1222(枚举or高斯消元解mod2方程组)
题目链接: http://poj.org/problem?id=1222 题意: 有一个 5 * 6 的初始矩阵, 1 表示一个亮灯泡, 0 表示一个不亮的灯泡. 对 (i, j) 位置进行一次操作则 ...
- poj1681(枚举or高斯消元解mod2方程组)
题目链接: http://poj.org/problem?id=1681 题意: 有一个包含 n * n 个方格的正方形, w 表示其所在位置为白色, y 表示其所在位置为黄色. 对 (i, j) 位 ...
- 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树
[题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)
http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...
- 【高斯消元解xor方程】BZOJ1923-[Sdoi2010]外星千足虫
[题目大意] 有n个数或为奇数或为偶数,现在进行m次操作,每次取出部分求和,告诉你这几次操作选取的数和它们和的奇偶性.如果通过这m次操作能得到所有数的奇偶性,则输出进行到第n次时即可求出答案:否则输出 ...
- bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...
- 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...
- [置顶] hdu 4418 高斯消元解方程求期望
题意: 一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问 ...
随机推荐
- Lib之过?Java反序列化漏洞通用利用分析
转http://blog.chaitin.com/ 1 背景 2 Java反序列化漏洞简介 3 利用Apache Commons Collections实现远程代码执行 4 漏洞利用实例 4.1 利用 ...
- Task Crontab
Crontab 1.查看任务 crontab -l 2.编辑任务 1)对应用户登录后编辑其下的作业 crontab -e 2)删除指定用户任务 crontab -u user -r 3)删除用户下指定 ...
- 用nfs挂载内核时出错 ERROR: Cannot umount的解决办法
SMDK2440 # nfs 30000000 192.168.1.106:/work/nfs_root/uImage ERROR: resetting ...
- vue-cli脚手架build目录中的webpack.dev.conf.js配置文件
此文章用来解释vue-cli脚手架build目录中的webpack.dev.conf.js配置文件 此配置文件是vue开发环境的wepack相关配置文件 关于注释 当涉及到较复杂的解释我将通过标识的方 ...
- PDM中列举所有含取值范围、正则表达式约束的字段
Option Explicit ValidationMode = True InteractiveMode = im_Batch Dim mdl '当前model '获取当前活 ...
- Java中Return和Finally执行顺序的实现
下面这段代码的执行结果是怎样的呢? publc int test(){ int x; try{ x = 1; return x; }catch(Exception e){ x = 2; return ...
- 【转载】C语言综合实验1—学生信息管理系统
http://www.cnblogs.com/Anker/archive/2013/05/06/3063436.html 实验题目:学生信息管理系统 实验要求:用户可以选择1-7可以分别进行学生信息的 ...
- 学习计划Python-转载
作者:闲谈后链接:https://www.zhihu.com/question/29775447/answer/145395619来源:知乎著作权归作者所有,转载请联系作者获得授权. 不过需要说明的是 ...
- 【270】IDL处理GeoTIFF数据
参考:将原GeoTIFF数据的投影坐标信息赋值到新创建的文件上 pro tiff_projection ;启动ENVI e = ENVI(/HEADLESS) ;打开文件 file = 'D:\01- ...
- [CSS Hack]解決IE6、IE7、IE8、Firefox的瀏覽器相容性問題!
每次調CSS最令人頭痛的就是瀏覽器校正問題,因為每個瀏覽器對CSS的解釋都不太一樣,Firefox本身算是比較照規矩來,處理上比較簡單,但是遇到微軟的IE系列頭就大了,雖然都是IE,但是IE6.IE7 ...