题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=1853

题解:

容斥原理,暴力搜索,剪枝(这剪枝剪得真玄学)

首先容易发现,幸运号码不超过 2*(2^10) 个
然后考虑用容斥原理去得出所有近似幸运号码的个数,
即加上由单数个幸运号码的 LCM得到的近似幸运号码的个数,
然后减去由偶数个幸运号码的 LCM得到的近似幸运号码的个数,
(那个个数就是 N/LCM 嘛)。

实现方法是 DFS。
(DFS就是枚举每个幸运号码选或不选,并对答案加加减减就好了)
但显然会超时,22048 的复杂度,蛤。

优化如下:
1).
去掉幸运号码里的倍数。
即如果存在两个幸运号码 i,j,且 i%j==0,那么就不要 i了。
(然后就只剩下 943个了)
2).把幸运号码从大到小枚举。这样在搜索是可以在更靠近搜索树根的位置把剪枝减掉。
3).DFS时发现当前选的数的 LCM>边界,就return掉。

然后就可以玄学地过了。
至于复杂度分析,除了感觉很快,额、、、、
看了一位博主的分析:
如果把剩下的幸运号码看成两两互质的,那么 LCM就等于选的数相乘,
那么显然 sqrt(N)以上的数只能选一个,而小于sqrt(N)的数又只有 15个左右,
所以就很快了。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
bool mark[3000];
ll luck[3000],l,r,ans;
int cnt; bool fg;
ll gcd(ll a,ll b){
while(b^=a^=b^=a%=b);
return a;
}
void dfs(int p,int num,ll val,const ll &lim){
if(!p) return;
ll LCM=val/gcd(val,luck[p])*luck[p];
if(0<LCM&&LCM<=lim) ans+=1ll*lim/LCM*((num+1)%2?1:-1),dfs(p-1,num+1,LCM,lim);
dfs(p-1,num,val,lim);
}
ll solve(ll lim){
ans=0;
dfs(cnt,0,1,lim);
return ans;
}
void pre(int dep,ll val){
if(val) luck[++cnt]=val;
if(!dep) return;
pre(dep-1,val*10+6);
pre(dep-1,val*10+8);
}
int main()
{
filein(luckynumber);
fileout(luckynumber);
pre(10,0); int ccnt=0;
sort(luck+1,luck+cnt+1);
for(int i=1;i<=cnt;i++)
for(int j=1;j<i;j++) if(luck[i]%luck[j]==0) mark[i]=1;
for(int i=1;i<=cnt;i++) if(!mark[i]) luck[++ccnt]=luck[i]; cnt=ccnt;
scanf("%lld%lld",&l,&r);
printf("%lld",solve(r)-solve(l-1));
return 0;
}

●BZOJ 1853 [Scoi2010]幸运数字的更多相关文章

  1. BZOJ 1853: [Scoi2010]幸运数字

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2117  Solved: 779[Submit][Status] ...

  2. Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1774  Solved: 644[Submit][Status] ...

  3. bzoj 1853: [Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1170  Solved: 406[Submit][Status] ...

  4. BZOJ 1853: [Scoi2010]幸运数字(容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1853 题意: 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运 ...

  5. bzoj 1853: [Scoi2010]幸运数字&&2393: Cirno的完美算数教室【容斥原理】

    翻了一些blog,只有我用状压预处理嘛2333,.把二进制位的0当成6,1当成8就行啦.(2393是2和9 然后\( dfs \)容斥,加上一个数的\( lcm \),减去两个数的\( lcm \), ...

  6. 【BZOJ 1853】 1853: [Scoi2010]幸运数字 (容斥原理)

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2472  Solved: 911 Description 在中国 ...

  7. 1853: [Scoi2010]幸运数字[容斥原理]

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

  8. BZOJ2393 & 1853 [Scoi2010]幸运数字 【搜索 + 容斥】

    题目 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是" ...

  9. AC日记——[SCOI2010]幸运数字 bzoj 1853

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

随机推荐

  1. Hibernate之HQL

    SQL语句的DML操作不外乎:增,删,改,查 增加 :  save(),persist() 删除 :   delete() 改动 :   update() 查询  :  get() ,load() 其 ...

  2. 第二篇:利用shell脚本执行webservice请求——基于soap

    1. 项目背景 以往我们在开发基于webservice的项目中,我们总习惯于直接使用webservice的一些框架,如Axis,axis2和Xfire等.框架的好处是将webservice所涉及到的s ...

  3. SpringMVC 无法访问到指定jsp页面可能的原因

    当出现你的程序可以访问到对应的controller层.但是却无法访问对应的jsp文件时.你首先做的不是检查web.xml等配置文件,而是打开的服务器根文件检查对应路径下的文件是否存在.命名是否正确.命 ...

  4. Unity使用脚本进行批量动态加载贴图

    先描述一下我正在做的这个项目,是跑酷类音游. 那么跑酷类音游在绘制跑道上的时候,就要考虑不同的砖块显示问题.假设我有了一个节奏列表,那么我们怎么将不同的贴图贴到不同的砖块上去呢? 我花了好几个小时才搞 ...

  5. JAVA_SE基础——3.Java程序的开发流程

    上一篇,写的是JAVA的环境变量的配置,今天我抽空写篇Java程序的开发流程,下面的教程是我结合书本和毕向东老师的视频写下的心的~ 在没有真正写Java程序前,首先需要了解Java程序的开发过程. S ...

  6. FTP传输文件被破坏的问题(Linux、Busybox)

    在网络设备上抓包后,通过FTP传输到本机,发现抓包文件破坏.更换tftp后文件正常,定位问题在FTP上. FTP的传输模式有两种:①ASCII  ②二进制 ①ASCII: 以ASCII编码的方式传输文 ...

  7. SQL SERVER 字符串按数字排序

    需求是这样的: 数据库表里面有一个字段类型是nvachar,存的值是数字和字符混合的,要实现先按数字排序,再按字母倒序. 思路: 考虑这个字段的值是否是有规律可循的,把要按数字排序的部分转换为数字,再 ...

  8. 深度学习之 GAN 进行 mnist 图片的生成

    深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Imag ...

  9. Python-Cpython解释器支持的进程与线程-Day9

    Cpython解释器支持的进程与线程 阅读目录 一 python并发编程之多进程 1.1 multiprocessing模块介绍 1.2 Process类的介绍 1.3 Process类的使用 1.4 ...

  10. HTML5的常用新特性你必须知道

    HTML5的常用新特性你必须知道 1 新的 声明 HTML 有多个不同的版本,只有完全明白页面中使用的确切 HTML 版本,浏览器才能完全正确地显示出 HTML 页面.这就是 的用处. 不是 HTML ...