poj 1265 Area 面积+多边形内点数
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 5861 | Accepted: 2612 |
Description
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
/*
poj 1265 Area 面积+多边形内点数 给你初始点以及每次走的方向,可以得到n个点的集合.然后计算这个多边的面积,多边形
内部包含的点数以及多边形边上的点数 因为多边形顶点都是整点,所以通过皮克定理可以得出其面积S和内部格点数目i、
边上格点数目j的关系:S = i + j/2 - 1.
所以我们可以先计算出多边的面积. 多边形边上的点数j满足一个GCD关系,可以求出
于是便能得到i hhh-2016-05-08 20:01:56
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 10100;
double PI = 3.1415926;
double eps = 1e-8; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point lis[maxn];
int Stack[maxn],top; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
bool cmp(Point a,Point b)
{
double t = (a-lis[0])^(b-lis[0]);
if(sgn(t) == 0)
{
return dist(a,lis[0]) <= dist(b,lis[0]);
}
if(sgn(t) < 0)
return false;
else
return true;
} bool Cross(Point a,Point b,Point c)
{
return (b.y-a.y)*(c.x-b.x) == (c.y-b.y)*(b.x-a.x);
} int GCD(int a,int b)
{
if(a < b)swap(a,b);
if(b == 0)
return a;
while(a % b)
{
int t = a%b;
a = b;
b = t;
}
return b;
} int main()
{
// freopen("in.txt","r",stdin);
int n,T;
int cas = 1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
double x=0,y=0;
double x1,y1;
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&x1,&y1);
lis[i].x = x+x1;
lis[i].y = y+y1;
x = lis[i].x;
y = lis[i].y;
}
printf("Scenario #%d:\n",cas++);
double res = 0;
for(int i = 0;i < n;i++)
{
res += (lis[i]^lis[(i+1)%n])/2;
}
int Onum = 0;
for(int i = 0;i < n;i++)
{
int tx = abs(lis[i].x - lis[(i+1)%n].x);
int ty = abs(lis[i].y - lis[(i+1)%n].y);
Onum += GCD(tx,ty);
}
int Inum = res*2+2-Onum;
printf("%d %d %.1f\n\n",Inum/2,Onum,res);
}
return 0;
}
poj 1265 Area 面积+多边形内点数的更多相关文章
- poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】
题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj 1654 Area(多边形面积)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17456 Accepted: 4847 Description ...
- poj 1654 Area(求多边形面积 && 处理误差)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16894 Accepted: 4698 Description ...
- POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积
题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...
- poj 1654 Area (多边形求面积)
链接:http://poj.org/problem?id=1654 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- POJ 1265 Area POJ 2954 Triangle Pick定理
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5227 Accepted: 2342 Description ...
随机推荐
- python API的安全认证
我们根据pid加客户端的时间戳进行加密md5(pid|时间戳)得到的单向加密串,与时间戳,或者其它字段的串的url给服务端. 服务端接收到请求的url进行分析 客户端时间与服务端的时间戳之差如果大于规 ...
- 20145237 实验二 “Java面向对象程序设计”
20145237 实验二 “Java面向对象程序设计” 实验内容 • 理解并掌握面向对象三要素:封装.继承.多态 • 初步掌握UML建模 • 熟悉S.O.L.I.D原则 • 使用TDD设计实现复数类 ...
- 【iOS】swift-文字宽度的计算
如图所示,需要sectionView的标题宽度可以动态变化 举例说明: 只需在tableView的代理方法 func tableView(tableView: UITableView, viewFor ...
- 自己写编程语言-m语言
一直对技术有很强的兴趣,终于,决定要写自己的语言(m语言).那就先从最简单的开始:解释执行器. 一套完整的语言包含的肯定不止解释执行器了,还要有编译器和IDE,也就还要有语法高亮.智能提示等,不过还没 ...
- 03-移动端开发教程-CSS3新特性(下)
1. CSS3动画 1.1 过渡的缺点 transition的优点在于简单易用,但是它有几个很大的局限. transition需要事件触发,所以没法在网页加载时自动发生. transition是一次性 ...
- JAVA_SE基础——70.Math类
package cn.itcast.other; /* Math 数学类, 主要是提供了很多的数学公式. abs(double a) 获取绝对值 ceil(double a) 向上取整 ...
- JAVA_SE基础——66.StringBuffer类 ③
如果需要频繁修改字符串 的内容,建议使用字符串缓冲 类(StringBuffer). StringBuffer 其实就是一个存储字符 的容器. 容器的具备 的行为 常用方法 String 增加 ap ...
- redis入门(04)redis的数据类型
Redis 数据类型 Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合). 1.String(字符串) ...
- uva 10917 Walk Through The Forest
题意: 一个人从公司回家,他可以从A走到B如果从存在从B出发到家的一条路径的长度小于任何一条从A出发到家的路径的长度. 问这样的路径有多少条. 思路: 题意并不好理解,存在从B出发到家的一条路径的长度 ...
- 南阳OJ-12-喷水装置(二)贪心+区间覆盖
题目链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=12 题目大意: 有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有 ...