poj 1265 Area 面积+多边形内点数
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5861 | Accepted: 2612 |
Description
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
/*
poj 1265 Area 面积+多边形内点数 给你初始点以及每次走的方向,可以得到n个点的集合.然后计算这个多边的面积,多边形
内部包含的点数以及多边形边上的点数 因为多边形顶点都是整点,所以通过皮克定理可以得出其面积S和内部格点数目i、
边上格点数目j的关系:S = i + j/2 - 1.
所以我们可以先计算出多边的面积. 多边形边上的点数j满足一个GCD关系,可以求出
于是便能得到i hhh-2016-05-08 20:01:56
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 10100;
double PI = 3.1415926;
double eps = 1e-8; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point lis[maxn];
int Stack[maxn],top; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
bool cmp(Point a,Point b)
{
double t = (a-lis[0])^(b-lis[0]);
if(sgn(t) == 0)
{
return dist(a,lis[0]) <= dist(b,lis[0]);
}
if(sgn(t) < 0)
return false;
else
return true;
} bool Cross(Point a,Point b,Point c)
{
return (b.y-a.y)*(c.x-b.x) == (c.y-b.y)*(b.x-a.x);
} int GCD(int a,int b)
{
if(a < b)swap(a,b);
if(b == 0)
return a;
while(a % b)
{
int t = a%b;
a = b;
b = t;
}
return b;
} int main()
{
// freopen("in.txt","r",stdin);
int n,T;
int cas = 1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
double x=0,y=0;
double x1,y1;
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&x1,&y1);
lis[i].x = x+x1;
lis[i].y = y+y1;
x = lis[i].x;
y = lis[i].y;
}
printf("Scenario #%d:\n",cas++);
double res = 0;
for(int i = 0;i < n;i++)
{
res += (lis[i]^lis[(i+1)%n])/2;
}
int Onum = 0;
for(int i = 0;i < n;i++)
{
int tx = abs(lis[i].x - lis[(i+1)%n].x);
int ty = abs(lis[i].y - lis[(i+1)%n].y);
Onum += GCD(tx,ty);
}
int Inum = res*2+2-Onum;
printf("%d %d %.1f\n\n",Inum/2,Onum,res);
}
return 0;
}
poj 1265 Area 面积+多边形内点数的更多相关文章
- poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】
题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj 1654 Area(多边形面积)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17456 Accepted: 4847 Description ...
- poj 1654 Area(求多边形面积 && 处理误差)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16894 Accepted: 4698 Description ...
- POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积
题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...
- poj 1654 Area (多边形求面积)
链接:http://poj.org/problem?id=1654 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- POJ 1265 Area POJ 2954 Triangle Pick定理
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5227 Accepted: 2342 Description ...
随机推荐
- java封装的概念
继承.封装.多态.抽象是面向对象编程的四大基本概念,其中封装尤为重要,因为从我们学习JAVA开始,就基本上接触了封装,因为JAVA中的所有程序都是写在类中的,类也能当做一种封装. 在面向对象中封装是指 ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- js中多维数组转一维
法一:使用数组map()方法,对数组中的每一项运行给定函数,返回每次函数调用的结果组成的数组. var arr = [1,[2,[[3,4],5],6]]; function unid(arr){ v ...
- vue初尝试--项目结构
新建一个项目之后,我们来看一下项目的目录结构 几个主要文件的内容 index.html文件(入口文件,系统进入之后先进入index.html) <!DOCTYPE html> <ht ...
- mysql数据库的三范式的设计与理解
一般的数据库设计都需要满足三范式,这是最基本的要求的,最高达到6NF,但是一般情况下3NF达到了就可以 一:1NF一范式的理解: 1NF是关系型数据库中的最基本要求,就是要求记录的属性是原子性,不可分 ...
- 第一章 创建WEB项目
第一章 创建WEB项目 一.Eclipse创建WEB项目 方法/步骤1 首先,你要先打开Eclipse软件,打开后在工具栏依次点击[File]>>>[New]>>&g ...
- JS 上传图片时实现预览
网页中一张图片可以这样显示: <img src="http://www.letuknowit.com/images/wg.png"/>也可以这样显示:<img s ...
- c# BinaryWriter 和 BinaryReader
string path = @"C:\Users\Administrator\Desktop\1.txt"; using (FileStream ws = new FileStre ...
- redis入门(04)redis的数据类型
Redis 数据类型 Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合). 1.String(字符串) ...
- 新概念英语(1-47)A cup of coffee
新概念英语(1-47)A cup of coffee How does Ann like her coffee? A:Do you like coffee, Ann? B:Yes, I do. A:D ...