[BZOJ2796][Poi2012]Fibonacci Representation
由于是斐波那契数列,所以$x_i+x_j<=x_k,i<j<k$
所以猜测可以贪心选择两边近的数处理。
#include<cstdio>
#include<algorithm>
#define ll long long
#define mid (l+r>>1)
using namespace std;
ll f[],tot=;
inline ll findl(ll x)
{
int l=,r=tot,ans=;
while(l<=r)
{
if(f[mid]<=x)ans=mid,l=mid+;
else r=mid-;
}
return f[ans];
}
inline ll findr(ll x)
{
int l=,r=tot,ans=;
while(l<=r)
{
if(f[mid]>=x)ans=mid,r=mid-;
else l=mid+;
}
return f[ans];
}
int solve(ll x)
{
ll l=findl(x),r=findr(x);
if(l==r)return ;
if(x-l<=r-x)return solve(x-l)+;
return solve(r-x)+;
}
int main()
{
f[]=f[]=;
while(f[tot-]<=4e17)
f[++tot]=f[tot-]+f[tot-];
int t;scanf("%d",&t);
ll x;
while(t--)scanf("%lld",&x),
printf("%d\n",solve(x));
}
[BZOJ2796][Poi2012]Fibonacci Representation的更多相关文章
- BZOJ2796[Poi2012]Fibonacci Representation——贪心+二分查找
题目描述 给出一个正整数x,问x最少能由多少个Fibonacci数加减算出. 例如1070=987+89-5-1,因此x=1070时答案是4. 输入 第一行一个正整数q (q<=10),表示有q ...
- 【bzoj2796】 [Poi2012]Fibonacci Representation
给出一个数字,用FIB数列各项加加减减来得到. 问最少要多少个(可以重复使用) 大概试了一下,fibonacci数列的增长是很快的,大概到了90+项就超过了题目范围…… 所以每次找一个最近的fibon ...
- BZOJ [Poi2012]Fibonacci Representation
找最近的数 记忆化 (我也不知道为什么对的) #include<cstdio> #include<algorithm> #include<map> using na ...
- bzoj 2796: [Poi2012]Fibonacci Representation
结论貌似是,,,肯定只有没有重复的数字.http://hzwer.com/6426.html 一开始猜的是贪心,感觉也是可以的啊...(想想都有道理,然而看到是神奇的(dp类)记忆化搜索,直接虚的不敢 ...
- 洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告
P3539 [POI2012]ROZ-Fibonacci Representation 题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来 多组数据10 数据范围1e17 第一次瞬间yy出做法, ...
- P3539 [POI2012]ROZ-Fibonacci Representation
题目描述 The Fibonacci sequence is a sequence of integers, called Fibonacci numbers, defined as follows: ...
- [POI2012]ROZ-Fibonacci Representation (数学)
大意:给定n, 求至少要多少个斐波那契数相加减后能得到n (可以重复, 重复的算多次) 假设$dp(x)$为$x$的最小划分, 有$dp(x)=dp(x-F_k)+1$, 其中$F_k$为最接近$x ...
- 洛谷P3539 [POI2012] ROZ-Fibonacci Representation
题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...
- [POI2012]ROZ-Fibonacci Representation (贪心)
大意: 给定数$n$, 求将$n$划分为最少的斐波那契数的和或差. 每次取相邻$n$的斐波那契数一定最优, 考虑证明. 结论1:存在一个最优解,使得每个斐波那契数使用不超过1次.(考虑$2F_n=F_ ...
随机推荐
- Ubuntu下安装Python3.4
转自:http://blog.sina.com.cn/s/blog_7cdaf8b60102vf2b.html 1. 通过命令行安装Python3.4,执行命令:sudo apt-get instal ...
- JAVA基础学习之final关键字、遍历集合、日期类对象的使用、Math类对象的使用、Runtime类对象的使用、时间对象Date(两个日期相减)(5)
1.final关键字和.net中的const关键字一样,是常量的修饰符,但是final还可以修饰类.方法.写法规范:常量所有字母都大写,多个单词中间用 "_"连接. 2.遍历集合A ...
- 重温WCF之发送和接收SOAP头(三)
SOAP头可以理解为一种附加信息,就是附加到消息正文的内容. 既然消息头是附加信息,那有啥用呢?你可别说,有时候还真有不少用处.举个例子,WCF的身份验证是不是很麻烦?还要颁发什么证书的(当然不是荣誉 ...
- Mishka and Interesting sum Codeforces Round #365 (树状数组)
树状数组,与Turing Tree类似. xr[i]表示从1到i的抑或,树状数组维护从1到i每个数只考虑一次的异或,结果为sum(r) ^ sum(l) ^ xr[r] ^ xr[l] 其中xr[r] ...
- WCF消息拦截,利用消息拦截做身份验证服务
本文参考 http://blog.csdn.net/tcjiaan/article/details/8274493 博客而写 添加对信息处理的类 /// <summary> /// 消 ...
- Thinkphp 解决写入配置文件的方法
在/Application/Common/Common创建function.php,然后添加以下代码: <?php /** * [writeArr 写入配置文件方法] * @param [typ ...
- 最实用的APP界面设计知识,有温度的APP设计(转)
在逛简书的时候,无意之间看到了这样的一篇非常有意思的app设计博文.顾25学堂的摘录了其中的一些关于移动端APP界面设计的精华.分享给25学堂的app设计师们. 当然,下面的这些app设计知识点是来自 ...
- Is WPFdead
最近看到一个bog.http://www.codeproject.com/Articles/818281/Is-WPF-dead-the-present-and-future-of-WPF 大体上讲了 ...
- user_jj两条记录改成一条
1.前台index控制器,用user_jj.*add找到,home_ddxx_pcz_cl() 2.前台index控制器,用user_jj.*add找到,tgbz_list_sd_cl(),tgbz_ ...
- 梳理源码中 View 的工作原理
欢迎Follow我的GitHub, 关注我的掘金. 在View的工作过程中, 执行三大流程完成显示, 测量(measure)流程, 布局(layout)流程, 绘制(draw)流程. 从perform ...