Introduction

在视频序列中,有些帧由于被严重遮挡,需要被尽可能的“忽略”掉,因此本文提出了时间注意力模型(temporal attention model,TAM),注重于更有相关性的帧。

常规的矩阵学习通常用特征的距离来进行计算,但忽视了帧之间的差异,上图可以看出,本文的方法考虑了相邻帧的空间差异,即空间循环模型(spatial recurrent model,SRM)。

The proposed method

(1)总体框架:

输入的视频序列为:,输入为视频序列三元组,首先通过CNN提取每帧的特征,选择的CNN为CaffeNet,包含5个卷积层(conv1~conv5)、2个全连接层(fc6~fc7),得到的输出为:

时间注意力模型包含两部分:学习每帧相关性的子网络和时间RNN模型提取特征,最后输出特征为:,定义为:

同时,对于视频对 xi 和 xj,计算(第5个卷积层后的池化层),并将其输入到空间循环模型,该部分包含6个RNN,每个RNN都从一个特定的方向提取特征。输出的结果为一对视频是否为同一个人的可能性,即

在测试中,最终两个视频的相似度可以计算为:(为什么这样计算?M的计算方法?)

其中 F 为欧式距离,λ 为平衡特征学习和矩阵学习的参数,默认为 1.

(2)针对特征学习的时间注意力模型(TAM):

输入CNN提取的特征,每次时间单元 t 都对帧都进行平均加权,即:

其中,参数 w 通过训练如下子网络获得:

得到的送入RNN,其中的RNN网络采用 Long Short-Term Memory(LSTM)网络。最后将 T 次结果进行时间平均池化。

(3)针对度量学习的空间循环模型(SRM):

输入一对视频序列的池化层特征,元素间进行相减操作,得到初步的差异映射,再通过1*1卷积。随后通过6个方向上的空间RNN模块,将得到的特征进行结合,再通过1*1卷积层和全连接层得到最终的特征。

其中RNN的工作原理为:

1*1卷积的原理为:

Experiments

(1)实验设置:

① 数据集:iLIDS-VID、PRID2011、MARS;

② 实现细节:CNN采用CaffeNet,RNN采用LSTM,视频序列长度设置为6,从tracklet中随机挑选,fc6和fc7的维度设置为1024.

(2)实验结果:

CNN:只使用CNN;

CNN+RNN:只使用CNN和RNN(不使用时间池化);

CNN+TAM:使用CNN和RNN基础上的时间池化;

CNN+DIFF:使用CNN,并用全连接层代替空间RNN;

CNN+SRM:使用CNN,并使用空间RNN:

ALL:CNN、时间RNN、空间RNN。

论文阅读笔记(二十二)【CVPR2017】:See the Forest for the Trees: Joint Spatial and Temporal Recurrent Neural Networks for Video-based Person Re-identification的更多相关文章

  1. 论文阅读笔记(十二)【CVPR2018】:Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning

    Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成 ...

  2. 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...

  3. 论文阅读笔记四十二:Going deeper with convolutions (Inception V1 CVPR2014 )

    论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4)   ...

  4. 论文阅读笔记三十二:YOLOv3: An Incremental Improvement

    论文源址:https://pjreddie.com/media/files/papers/YOLOv3.pdf 代码:https://github.com/qqwweee/keras-yolo3 摘要 ...

  5. 论文阅读笔记六十二:RePr: Improved Training of Convolutional Filters(CVPR2019)

    论文原址:https://arxiv.org/abs/1811.07275 摘要 一个训练好的网络模型由于其模型捕捉的特征中存在大量的重叠,可以在不过多的降低其性能的条件下进行压缩剪枝.一些skip/ ...

  6. 论文阅读笔记三十六:Mask R-CNN(CVPR2017)

    论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN ...

  7. 论文阅读笔记三十四:DSSD: Deconvolutiona lSingle Shot Detector(CVPR2017)

    论文源址:https://arxiv.org/abs/1701.06659 开源代码:https://github.com/MTCloudVision/mxnet-dssd 摘要 DSSD主要是向目标 ...

  8. 论文阅读笔记五十:CornerNet: Detecting Objects as Paired Keypoints(ECCV2018)

    论文原址:https://arxiv.org/pdf/1808.01244.pdf github:https://github.com/princeton-vl/CornerNet 摘要 本文提出了目 ...

  9. 论文阅读笔记四十四:RetinaNet:Focal Loss for Dense Object Detection(ICCV2017)

    论文原址:https://arxiv.org/abs/1708.02002 github代码:https://github.com/fizyr/keras-retinanet 摘要 目前,具有较高准确 ...

随机推荐

  1. 使用Java注解实现简单的依赖注入

    代码如下: /** * 注入的注解,为空,仅起标志作用 */ @Target({ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME) @int ...

  2. Jmeter源码编译缺bouncycastle包

    Jmeter源码下载后install没问题,运行newDrive时会包包不存在,因为下载时缺少三个包没下载成功,点击链接下载并放到lib目录下即可 下载

  3. 文本相似性热度统计(python版)

    0. 写在前面 节后第一篇,疫情还没结束,黎明前的黑暗,中国加油,武汉加油,看了很多报道,发现只有中国人才会帮助中国人,谁说中国人一盘散沙?也许是年龄大了,看到全国各地的医务人员源源不断的告别家人去支 ...

  4. 高精度模板(Vector实现更加方便)

    计算的数long long 甚至更大的数据类型的都存不下的时候,应该怎么办 ? 解决方法 :我们可以把一个很大的数当做字符串进行处理,这时候就需要用到高精度. 话不多说,咱们边看代码边处理 : 加法 ...

  5. 超长可视化指南!带你理清K8S部署的故障排查思路,让bug无处遁形

    本文将帮助你厘清在Kubernetes中调试 deployment的思路.下图是完整的故障排查思路,如果你想获得更清晰的图片,请在公众号后台(RancherLabs)回复"troublesh ...

  6. C/C++中的排序和查找

    以下内容来自<C/C++程序设计实用案例教程> 1.排序 1.1使用qsort函数 C/C++库函数提供了快速排序函数qsort(q时quick的简写),需要引入头文件<stdlib ...

  7. Thread Based Parallelism - Thread Synchronization With Lock

    Thread Based Parallelism - Thread Synchronization With Lock import threading shared_resource_with_lo ...

  8. Apache 容器 Directory Location Files 及htaccess文件

    配置段容器的类型 相关模块 core mod_proxy 相关指令 <Directory> <DirectoryMatch> <Files> <FilesMa ...

  9. Shell脚本 server rsync 控制脚本

    [root@backup ~]# vim /etc/init.d/rsync#!/bin/bash #this script for start|stop rsync daemon service s ...

  10. Day4前端学习之路——背景边框列表链接和更复杂的选择器

    课程目标 掌握 CSS 稍微复杂的一些选择器,还有背景,边框等一些 CSS 样式属性 主要内容: 背景属性 边框 列表 链接 其他选择器 选择器概览:https://www.w3school.com. ...