51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)
首先,51nod的那道题就是最简单的尼姆博弈问题。
尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同的石子数。
再看另外一个奇异局势(1,2,3):
①如果先手拿第一个石子堆,那么后手可以形成(0,2,2)的局势,先手必败。
②如果先手拿第二个石子堆的1个石子,那么后手可以形成(1,1,0)的局势,先手必败。
③如果先手拿第二个石子堆的2个石子,那么后手可以形成(1,0,1)的局势,先手必败。
后面的同理分析即可。
现在我们需要考虑的是如何判断一个局势是否是奇异局势?
奇异局势的判断就是所有堆的值异或起来,如果最后等于0就是奇异局势,如果不是则不是奇异局势(异或的原理就是对于二进制的每一位进行运算,如果某一位最后为0,那么就说明该位上有偶数次1出现,偶数次说明什么呢?说明先手在某堆石子操作后,后手总能在另一堆石子里去做相对应的操作)。
那么如果先手面对的是非奇异局势,也只需要一步就可以变成奇异局势,将所有堆的值异或起来(除去最大堆),再用最大堆-该异或值,就是所拿石子数。
#include<cstdio>
using namespace std; int n; int main()
{
while(~scanf("%d",&n))
{
int ans=;
for(int i=;i<n;i++)
{
int x; scanf("%d",&x);
ans^=x;
}
if(ans) puts("A");
else puts("B");
}
return ;
}
接下来介绍一下anti-nim游戏,它的话就是取到最后一个石子输。
对于这种题目,它有一个专门的SJ定理:(具体的话就参见论文吧)
对于一个Anti-Nim游戏,只要有以下两条条件之一,先手必胜:
1.游戏的总SG函数为0且任意子游戏的SG函数不超过1;
2.游戏的总SG函数不为0且至少存在一个子游戏的SG函数超过1。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = + ; int n; int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
int sum=;
scanf("%d",&n);
bool flag=false;
for(int i=;i<=n;i++)
{
int x; scanf("%d",&x);
sum^=x;
if(x>) flag=true;
}
if((!sum && !flag) || (sum && flag)) puts("John");
else puts("Brother");
}
return ;
}
51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)的更多相关文章
- bzoj 1022: [SHOI2008]小约翰的游戏John anti_nim游戏
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1189 Solved: 734[Submit][ ...
- BZOJ 1022 [SHOI2008]小约翰的游戏John
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1635 Solved: 1036[Submit] ...
- BZOJ 1022 [SHOI2008]小约翰的游戏John AntiNim游戏
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1475 Solved: 932[Submit][ ...
- BZOJ 1022: [SHOI2008]小约翰的游戏John (Anti-nim)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3134 Solved: 2003[Submit][Status][Discuss] Descripti ...
- BZOJ 1022: [SHOI2008]小约翰的游戏John【anti-SG】
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
- BZOJ 1022 SHOI2008 小约翰的游戏John 博弈论
题目大意:反Nim游戏,即取走最后一个的人输 首先状态1:假设全部的堆都是1,那么堆数为偶先手必胜,否则先手必败 然后状态2:假设有两个堆数量同样且不为1,那么后手拥有控场能力,即: 若先手拿走一堆, ...
- BZOJ.1022.[SHOI2008]小约翰的游戏John(博弈论 Anti-Nim)
题目链接 Anti-Nim游戏: 先手必胜当且仅当: 1.所有堆的石子数为1,且异或和为0 2.至少有一堆石子数>1,且异或和不为0 简要证明: 对于1:若异或和为1,则有奇数堆:异或和为0,则 ...
- BZOJ 1022: [SHOI2008]小约翰的游戏John [SJ定理]
传送门 $anti-nim$游戏,$SJ$定理裸题 规定所有单一游戏$sg=0$结束 先手必胜: $1.\ sg \neq 0,\ 某个单一游戏sg >1$ $2.\ sg = 0,\ 没有单一 ...
- bzoj 1022: [SHOI2008]小约翰的游戏John【anti-nim】
如果全是1,那么n是奇数先手必败 否则,xor和为0先手必败 证明见 https://www.cnblogs.com/Wolfycz/p/8430991.html #include<iostre ...
随机推荐
- Axis2之异步调用
本章主要介绍axis2接口的异步调用方式. 一般情况下,我们使用同步方法(invokeBlocking)调用axis2接口,如果被调用的WebService方法长时间不返回,客户端将一直被阻塞,直到该 ...
- python练习题-打印斐波拉契数列前n项
打印斐波拉契数列前n项 #encoding=utf-8 def fibs(num): result =[0,1] for i in range(num-2): result. ...
- 转:C#串口编程
本文用来简单介绍一下C#串口编程的知识,主要以实例为内容. 凡是串口设备和计算机交互的时候都用到串口,在C#中我们如何来操作串口呢? 大话串口工作原理 实际串口是用来和外部设备进行交换数据的,我抽象出 ...
- tomcat9.0 配置账户
原文见: http://blog.csdn.net/guochunyang/article/details/51820066 tomcat9.0 管理页面如:http://192.168.2.10 ...
- I2S接口介绍
I2S接口介绍一.I2S协议介绍 I2S协议作为音频数据传输协议,由Philips制定.该协议由三条数据线组成:1.SCLK:串行时钟,频率= 2 * 采样频率 * 采样位数.2.WS:字段(声道)选 ...
- linux grep 正则表达式
grep正则表达式元字符集: ^ 锚定行的开始 如:'^grep'匹配所有以grep开头的行. $ 锚定行的结束 如:'grep$'匹配所有以grep结尾的行. . 匹配一个非换行符的字符 如:'gr ...
- js 迭代方法
迭代方法 * every():对数组中的每一项运行给定函数,如果该函数对每一项都返回true,则返回true. * filter():对数组中的每一项运行给定函数,返回该函数会返回true 的项组成的 ...
- Andriod post Api与返回值
vs后台api控制器 post接收参数----HttpContext.Current.Request.Params["account"].ToString() 返回值为对象返回, ...
- Tomcat启动报错:[The configuration may be corrupt or incomplete]的解决方案
1,场景说明: 偶然碰见Tomcat启动报错,此时并没有Add任何Web项目: Could not load the Tomcat server configuration at /Servers/T ...
- Camera2点击对焦实现
https://www.jianshu.com/p/76225ac72b56 android从5.0开始,废弃了原有的Camera接口,提供了全新的Camera2接口.Camera2接口为了给app提 ...