#2508. 「AHOI / HNOI2018」游戏

题目描述

一次小 G 和小 H 在玩寻宝游戏,有 nnn 个房间排成一列,编号为 1,2,…,n,相邻房间之间都有 111 道门。其中一部分门上有锁(因此需要对应的钥匙才能开门),其余的门都能直接打开。

现在小 G 告诉了小 H 每把锁的钥匙在哪个房间里(每把锁有且只有一把钥匙),并作出 ppp 次指示:第 iii 次让小 H 从第 SiS_iS​i​​ 个房间出发,去第 TiT_iT​i​​ 个房间寻宝。但是小 G 有时会故意在指令里放入死路,而小 H 也不想浪费多余的体力去尝试,于是想事先调查清楚每次的指令是否存在一条通路。

你是否能为小 H 作出解答呢?

输入格式

第一行三个整数nnn,mmm,ppp,代表共有 nnn 个房间,mmm 道门上了锁,以及 ppp 个询问。

接下来 mmm 行每行有两个整数xxx,yyy,代表第 xxx 到第 x+1x + 1x+1 个房间的门上有把锁,并且这把锁的钥匙被放在了第 yyy 个房间里。输入保证 xxx 不重复。

接下来 ppp 行,其中第 iii 行是两个整数 SiS_iS​i​​,TiT_iT​i​​,代表一次询问。

输出格式

输出 mmm 行,每行一个大写的 YES 或 NO 分别代表能或不能到达。

样例

样例输入 1

5 4 5
1 3
2 2
3 1
4 4
2 5
3 5
4 5
2 1
3 1

样例输出 1

YES
NO
YES
YES
NO

样例解释 1

第一个询问 S=2S = 2S=2、T=5T = 5T=5 的一条可行路线是:2→3→2→1→2→3→4→52 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 52→3→2→1→2→3→4→5。

样例输入 2

此组样例满足特性:y≤xy \le xy≤x 恒成立

7 5 4
2 2
3 3
4 2
5 3
6 6
2 1
3 4
3 7
4 5

样例输出 2

YES
YES
NO
NO

样例解释 2

第一个询问 222 和 111 房间之间没有锁所以为一条通路。

数据范围与提示

测试点编号 n m 其他特性
1 ≤1000 \le 1000≤1000 ≤1000 \le 1000≤1000
2 ≤1000 \le 1000≤1000 ≤1000 \le 1000≤1000
3 ≤105 \le 10^5≤10​5​​ ≤105 \le 10^5≤10​5​​ y≤xy \le xy≤x 恒成立
4 ≤105 \le 10^5≤10​5​​ ≤105 \le 10^5≤10​5​​ y≤xy \le xy≤x 恒成立
5 ≤105 \le 10^5≤10​5​​ ≤105 \le 10^5≤10​5​​
6 ≤105 \le 10^5≤10​5​​ ≤105 \le 10^5≤10​5​​
7 ≤106 \le 10^6≤10​6​​ ≤106 \le 10^6≤10​6​​ y≤xy \le xy≤x 恒成立
8 ≤106 \le 10^6≤10​6​​ ≤106 \le 10^6≤10​6​​ y≤xy \le xy≤x 恒成立
9 ≤106 \le 10^6≤10​6​​ ≤106 \le 10^6≤10​6​​
10 ≤106 \le 10^6≤10​6​​ ≤106 \le 10^6≤10​6​​

对于所有数据,保证 1≤n,p≤1061 \le n,p \le 10^61≤n,p≤10​6​​,0≤m<n0 \le m < n0≤m<n,1≤x,y,Si,Ti<n1 \le x, y, S_i,T_i < n1≤x,y,S​i​​,T​i​​<n,保证 xxx 不重复。

由于本题输入文件较大,建议在程序中使用读入优化。

/*
一个点能够扩张的区间是由它周围的点转移过来的
随机化更新的顺序,每次更新进行左右扩张即可
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<algorithm>
#define maxn 1000010
using namespace std;
int n,L[maxn],R[maxn],p[maxn],rd[maxn];
int qread(){
int i=,j=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-')j=-;ch=getchar();}
while(ch<=''&&ch>=''){i=i*+ch-'';ch=getchar();}
return i*j;
}
void extend(int i){
bool flag=;
while(flag){
flag=;
while(L[i]> && (p[L[i]-]==||(L[i]<=p[L[i]-]&&p[L[i]-]<=R[i])))
flag=,L[i]=min(L[i],L[L[i]-]),R[i]=max(R[i],R[R[i]-]);
while(R[i]<n && (p[R[i]]==||(L[i]<=p[R[i]]&&p[R[i]]<=R[i])))
flag=,L[i]=min(L[i],L[L[i]+]),R[i]=max(R[i],R[R[i]+]);
}
}
int main(){
srand(time());
int m,q,x,y;
n=qread();m=qread();q=qread();
for(int i=;i<=m;i++){
x=qread();
p[x]=qread();
}
for(int i=;i<=n;i++)L[i]=R[i]=i;
for(int i=;i<=n;i++)rd[i]=i;
random_shuffle(rd+,rd+n+);
for(int i=;i<=n;i++)extend(rd[i]);
while(q--){
x=qread();y=qread();
if(L[x]<=y&&y<=R[x])puts("YES");
else puts("NO");
}
return ;
}

loj #2508. 「AHOI / HNOI2018」游戏的更多相关文章

  1. 【LOJ】#2508. 「AHOI / HNOI2018」游戏

    题解 把没有门的点缩成一个点 如果\(i->i + 1\)的钥匙大于\(i\),那么\(i\)不可以到\(i + 1\),连一条\(i\)到\(i + 1\)的边 如果\(i->i + 1 ...

  2. Loj #2494. 「AHOI / HNOI2018」寻宝游戏

    Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得 ...

  3. Loj #2495. 「AHOI / HNOI2018」转盘

    Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...

  4. loj #2510. 「AHOI / HNOI2018」道路

    #2510. 「AHOI / HNOI2018」道路 题目描述 W 国的交通呈一棵树的形状.W 国一共有 n−1 个城市和 nnn 个乡村,其中城市从 111 到 n−1 编号,乡村从 111 到 n ...

  5. loj #2509. 「AHOI / HNOI2018」排列

    #2509. 「AHOI / HNOI2018」排列   题目描述 给定 nnn 个整数 a1,a2,…,an(0≤ai≤n),以及 nnn 个整数 w1,w2,…,wn.称 a1,a2,…,an 的 ...

  6. @loj - 2496@ 「AHOI / HNOI2018」毒瘤

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的 ...

  7. loj#2510. 「AHOI / HNOI2018」道路 记忆化,dp

    题目链接 https://loj.ac/problem/2510 思路 f[i][a][b]表示到i时,公路个数a,铁路个数b 记忆化 复杂度=状态数=\(nlog^2n\) 代码 #include ...

  8. loj#2509. 「AHOI / HNOI2018」排列(思维题 set)

    题意 题目链接 Sol 神仙题Orz 首先不难看出如果我们从\(a_i\)向\(i\)连一条边,我们会得到以\(0\)为根的树(因为每个点一定都有一个入度,出现环说明无解),同时在进行排列的时候需要保 ...

  9. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

随机推荐

  1. 易混淆的Window窗体与父窗体之间位置关系

    假设有abc三个窗体,a是最外层窗体,b是a的子窗体,c是b的子窗体 c.Top,c.Left,c.Bottom,c.Location等都是相对于B的左上角点的,子窗体的位置点都是相对于父窗体而言的, ...

  2. 界面主窗体,子窗体的InitializeComponent(构造函数)、Load事件执行顺序

    主窗体,子窗体的InitializeComponent(构造函数).Load事件执行顺序1.执行主窗体定义事件 new函数时,同时执行主窗体构造函数,默认就一个InitializeComponent函 ...

  3. 每天一个Linux命令 - 【chkconfig】

    [命令]:chkonconfig [语法]:chkconfig [选项] [功能介绍]:chkconfig 命令是Redhat兼容的Linux发行版中的系统服务管理工具,它可以查询和更新不同的运行等一 ...

  4. MongoDB安全加固方案,防止数据泄露被勒索

    早上起来,发现生产数据库被删了,留下一个数据库名叫“PLEASE_READ”,里面内容如下: "Info" : "Your DB is Backed up at our ...

  5. Winform绑定图片的三种方式

    1.绝对路径: this.pictureBox2.Image=Image.FromFile("D:\\001.jpg"); 2.相对路径: Application.StartupP ...

  6. JDK和CGLIB生成动态代理类的区别(转)

     关于动态代理和静态代理 当一个对象(客户端)不能或者不想直接引用另一个对象(目标对象),这时可以应用代理模式在这两者之间构建一个桥梁--代理对象. 按照代理对象的创建时期不同,可以分为两种: 静态代 ...

  7. mysql之约束以及修改数据表

    数据约束的分类: ———————————————————————————————————————————————————— 外键约束的要求解析: //在my文件中的这句话代表着搜索引擎,如果不是的就需 ...

  8. fgets、gets和scanf的区别

    gets()从stdin流中读取字符串,直至接受到换行符或EOF时停止,并将读取的结果存放在buffer指针所指向的字符数组中.换行符不作为读取串的内容,读取的换行符被转换为null值,并由此来结束字 ...

  9. centos7 安装erlang rabbitMQ

    环境: 虚拟机 centos7 minimal 一.安装Erlang 1.安装依赖 yum install build-essential openssl openssl-devel unixODBC ...

  10. 正确理解Python函数是第一类对象

    正确理解 Python函数,能够帮助我们更好地理解 Python 装饰器.匿名函数(lambda).函数式编程等高阶技术. 函数(Function)作为程序语言中不可或缺的一部分,太稀松平常了.但函数 ...