【例1】八皇后问题。

在一个8×8国际象棋盘上,放置8个皇后,每个皇后占一格,要求皇后间不会出现相互“攻击”的现象,即不能有两个皇后处在同一行、同一列或同一对角线上。问共有多少种不同的放置方法?

(1)编程思路。

在八皇后问题中,由于任意两个皇后不同行,因此可以将布局表示为一维数组chess[8]。数组的下标i表示棋盘上的第i行,chess[i]的值表示皇后在第i行所放的位置。如chess[1]=5,表示在棋盘的第1行的第5列放一个皇后。

为了寻找满足要求的布局chess,可依次产生部分布局(chess[0]),(chess[0]、chess[1]),…,直至最后产生出完整布局(chess[0]、chess[1]、…、chess[7])。每一步都要求保证它们是在不同列和不同对角线上。可采用深度优先搜索算法完成。

(2)源程序。

#include <iostream>

using namespace std;

void show_chess(void);

int check(int n);

void putchess(int n);

int chess[8];

int main()

{

cout<<"All Results are :"<<endl;

putchess(0);

return 0;

}

// 递归函数:在从第n行开始放皇后

void putchess(int n)

{

int i;

if (n<8)

{

for (i = 0; i <8; i++)      // 将第n行从第一格(i)开始往下放

{

chess[n] = i;

if (check(n) == 1)       // 若可放,则检查是否放满

{

if (n == 7)

show_chess();     // 若已放满到8行时,则表示找出一种解,打印出来

else

putchess(n + 1);   // 若没放满则放下一行 putchess(n+1)

}

}

}

}

// 根据前面几行的子,检查第n行所放的皇后是否合法

int check(int n)

{

int i;

for (i = 0; i <= n - 1; i++)

if (chess[n] == chess[i] + (n - i) ||chess[n] == chess[i] - (n - i) ||chess[n] == chess[i] )

return 0;

return 1;

}

// 函数:打印结果

void show_chess(void)

{

static int count = 0;

cout<<"************* 第"<<++count<<"种 *************"<<endl;

for(int i=0; i<8; i++)

{

for(int j=0; j<8; j++)

if (j==chess[i]) cout<<"1 ";

else  cout<<"0 ";

cout<<endl;

}

}

【例2】棋盘问题(POJ 1321)。
Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output

2
1

(1)编程思路。

在棋盘问题中,棋子摆放的位置只能是“#”, 且不能同行和同列。由于在深度优先搜索中采用按行递增的顺序来搜索的,这样每次递归下一行,所以每一行不会有冲突,不可能出现同行的情况。只需保证不同列,为判断某一列上是否有其他棋子,可定义一个数组visit[]来保存列的访问状态,visit[i]=true表示第i列上放置有棋子;visit[i]=false表示第i列上未放置棋子。

(2)源程序1。

#include <iostream>

using namespace std;

bool visit[20];

char map[20][20];

int ans,k,n;    // ans表示方案数,k表示棋子数目,n表示棋盘的大小

void DFS(int row,int num)   // 逐行搜索,row为当前搜索行,num为已填充的棋子数

{

if(num>=k)   // 判断是否棋子已经放完,如果放完,记录方案数加1

{

ans++;

return;

}

for(int i=row;i<n;i++)

{

for(int j=0;j<n;j++)

{

if(!visit[j] && map[i][j]=='#')  // 如果该列没放棋子且该位置为棋盘,那么在这里放上棋子

{

visit[j]=true;             // 标记该列上有棋子

DFS(i+1,num+1);   // 搜索下一行放下一个棋子

visit[j]=false;           // 修改标记后递归回来要及时复原

}

}

}

}

int main()

{

int i;

while (cin>>n>>k)

{

if (n==-1&&k==-1)

break;

for (i=0;i<n;i++)

visit[i]=false;

for (i=0;i<n;i++)

cin>>map[i];

ans=0;

DFS(0,0);

cout<<ans<<endl;

}

return 0;

}

(3)源程序2。

#include <iostream>
using namespace std;
bool visit[20];
char map[20][20];
int ans,k,n;   // ans表示方案数,k表示棋子数目,n表示棋盘的大小
void DFS(int row,int num)    // 逐行搜索,row为当前搜索行,num为已填充的棋子数
{
    if(num==k)
   {
       ans++;
       return;
    }
    if (row>=n) return ;
    for(int j=0;j<n;j++) // 当前行放一个棋子
    {
        if(!visit[j] && map[row][j]=='#')
       {
           visit[j]=true;
           DFS(row+1,num+1);
           visit[j]=false;
        } 
     }
    DFS(row+1,num); // 当前行不放棋子
}
int main()
{
     int i;
     while (cin>>n>>k)
     {
         if (n==-1&&k==-1)
             break;
         for (i=0;i<n;i++)
             visit[i]=false;
         for (i=0;i<n;i++)
             cin>>map[i];
         ans=0;
        DFS(0,0);
        cout<<ans<<endl;
    }
    return 0;
}

DFS(三):八皇后问题的更多相关文章

  1. 用dfs求解八皇后问题

    相信大家都已经很熟悉八皇后问题了,就是指:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法.主要思路:按行进行深度优先搜索,在该 ...

  2. hdu2553N皇后问题(dfs,八皇后)

    N皇后问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  3. dfs 解决八皇后问题 以及其他图搜索问题

    33. N皇后问题 中文 English n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击(任意两个皇后不能位于同一行,同一列,同一斜线). 给定一个整数n,返回所有不同的n皇后问 ...

  4. DFS解决八皇后问题

    2019-07-29 16:49:15 #include <bits/stdc++.h> using namespace std; ][]; int tot; int check(int ...

  5. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  6. 深度搜索(dfs)+典型例题(八皇后)

    深度优先搜索简称深搜,从起点出发,走过的点要做标记,发现有没走过的点,就随意挑一个往前走,走不了就回退,此种路径搜索策略就称为“深度优先搜索”,简称“深搜”. 如上面的图所示:加入我们要找一个从V0到 ...

  7. 八皇后(dfs+回溯)

    重看了一下刘汝佳的白板书,上次写八皇后时并不是很懂,再写一次: 方法1:逐行放置皇后,然后递归: 代码: #include <bits/stdc++.h> #define MAXN 8 # ...

  8. 八皇后问题-dfs

    一.题意解析 国际象棋中的皇后,可以横向.纵向.斜向移动.如何在一个8X8的棋盘上放置8个皇后,使得任意两个皇后都不在同一条横线.竖线.斜线方向上?八皇后问题是一个古老的问题,于1848年由一位国际象 ...

  9. 八皇后问题解题报告(dfs

    这里是代码传送门 所谓八皇后问题,一开始接触,上学期舍友提及的,但是因为各种原因,水平不够,并没有关心,偶然之间,再次遇见,便进行的尝试(棋盘是0-7的,不是1-8的...开始打弄错了) 所谓八皇后问 ...

随机推荐

  1. jsp模板

    <%String path = request.getContextPath();String basePath = request.getScheme()+"://"+re ...

  2. C# windows服务,解决应用程序开机自启问题

    最近在东营做一个超市购物的项目,业务体量很小,是仅供内部员工使用的内网应用程序,其中涉及一个商品数据同步的winform应用程序,有一个问题就是服务器重启后,必须登录服务器操作系统,手动启动才行,于是 ...

  3. 如何查看laravel门脸类包含方法的源码

    以Route门脸类为例,我们定义路由时使用的就是Route门脸类,例如我们在web.php中定义的路由 use Illuminate\Support\Facades\Route; Route::get ...

  4. Zabbix 数据清理

    目录 Zabbix 数据清理的一系列操作 一.问题 二.解决办法 Zabbix 数据清理的一系列操作 基本信息: Zabbix 版本 4.0.9 MySQL 版本 5.5 一.问题 我们将 Zabbi ...

  5. C#排序案例

    using System; namespace 排序案例 { class Program { static void Main(string[] args) { //定义随机数列 int a, b, ...

  6. .net ajax跨域请求问题

    </system.codedom>     <system.webServer>         <defaultDocument>             < ...

  7. 转:用 Python 一键分析你的上网行为, 看是在认真工作还是摸鱼

    简介 想看看你最近一年都在干嘛?看看你平时上网是在摸鱼还是认真工作?想写年度汇报总结,但是苦于没有数据?现在,它来了. 这是一个能让你了解自己的浏览历史的Chrome浏览历史记录分析程序,当然了,他仅 ...

  8. PHP的循环和函数

    1.循环      1.1for循环 for(初始值;条件;增量){ //循环体 } 1.2while.do-while while(条件){ } ------------------------- ...

  9. Java生鲜电商平台-深入订单拆单架构与实战

    Java生鲜电商平台-深入订单拆单架构与实战 Java生鲜电商中在做拆单的需求,细思极恐,思考越深入,就会发现里面涉及的东西越来越多,要想做好订单拆单的功能,还是相当有难度, 因此总结了一下拆单功能细 ...

  10. mssql下调用dll

    1.新建类库,里面写入方法,类库里必须样静态,防止实例化 2.将dll存放到文件夹里 3.在sql中运行 EXEC sp_configure 'clr enabled' , '1'; --0代表不允许 ...