Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2102   Accepted: 975

Description

A tournament can be represented by a complete graph in which each vertex denotes a player and a directed edge is from vertex x to vertex y if player x beats player y. For a player x in a tournament T, the score of x is the number of players beaten by x. The score sequence of T, denoted by S(T) = (s1, s2, . . . , sn), is a non-decreasing list of the scores of all the players in T. It can be proved that S(T) = (s1, s2, . . . , sn) is a score sequence of T if and only if 
for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores. 
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2. 

Input

The first line of the input file contains an integer m, m <= 10, which represents the number of test cases. The following m lines contain m score sequences in which each line contains a score sequence. Note that each score sequence contains at most ten scores.

Output

The maximum number of strong kings for each test case line by line.

Sample Input

5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3

Sample Output

2
4
5
3
5

Source

网络流 最大流

将代表每场比赛的边记为流量图中的点,从S到每场比赛连边,容量为1;

从每个参赛者到T连边,容量为胜利场数。

假设king是胜场最多的前king个人,将参赛者a[]按胜利次数从大到小排序,方便连边。枚举或者二分king数量(n<=10,复杂度没啥差别),对于每场比赛,如果其中一方a是king,且另一方b胜场更多,那么将边强行定向,从比赛到a连边,容量为1(表示胜利);否则a和b都可以胜利,就将边看作双向边,比赛到a、b各连一条边,容量为1。

↑如果能跑满流,那么当前选取的king个数可行。

(测试数据格式似乎很诡异,以下代码中,如果读入方式换成注释掉的部分,本地手测都能过,交上去就WA)

刚开始有另一种设想:

  将参赛者拆点,S到每个入点连边,容量为此人胜场a[i],每个出点到T连边,容量为此人负场n-1-a[i]。

  枚举king的个数,每多加一个人,就在前一步的参量网络上添边,看网络流能否增广,能就继续加king人数。

  但是这种算法在测discuss里的大数据时就挂掉了。

  ↑姑且记个思路。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
#define LL long long
using namespace std;
const int mx[]={,,,-,};
const int my[]={,,,,-};
const int mxn=;
int a[mxn],n=;
int cmp(const int q,const int e){return q>e;}
void read(){
char s[];
/* fgets(s,200,stdin);
int len=strlen(s);
for(int i=0;i<len;i++){
int x=0,f=1;char ch=s[i];
while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=s[++i];}
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=s[++i];}
a[++n]=x;
}*/
gets(s);
int len=strlen(s);
for(int i=;i<len;i++){
if(s[i]>='' && s[i]<='')a[++n]=(s[i]-'');
}
return;
}
struct edge{int v,nxt,f;}e[mxn*mxn*];
int hd[mxn],mct=;
inline void add_edge(int u,int v,int f){
e[++mct].v=v;e[mct].f=f;e[mct].nxt=hd[u];hd[u]=mct;return;
}
inline void ins(int u,int v,int f){add_edge(u,v,f);add_edge(v,u,);return;}
int S,T;
int id[][];
int bct=;
void init(){
memset(hd,,sizeof hd);
n=;mct=;bct=;
return;
}
void init2(){
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
id[i][j]=id[j][i]=++bct;
return;
}
int d[mxn];
bool BFS(){
memset(d,,sizeof d);
queue<int>q;
d[S]=;
q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
if(u==T)return lim;
int tmp,f=;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f){
tmp=DFS(v,min(lim,e[i].f));
e[i].f-=tmp;
e[i^].f+=tmp;
f+=tmp;
lim-=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,1e9);
return res;
}
int smm=;
bool solve(int lim){
int i,j;
memset(hd,,sizeof hd);
mct=;
for(i=;i<=smm;i++)ins(S,i,);
for(i=;i<=n;i++)ins(smm+i,T,a[i]);//胜场
int hd=;
for(i=;i<=n;i++)
for(j=;j<=i;j++){
if(i==j)continue;
if(i<=lim && a[i]<a[j])ins(id[i][j],smm+i,);
else{
ins(id[i][j],smm+i,);
ins(id[i][j],smm+j,);
}
}
if(Dinic()==smm)return ;
return ;
}
int m;
int main()
{
scanf("%d\n",&m);
int i,j;
while(m--){
init();//
read();
sort(a+,a+n+,cmp);
init2();
// for(i=1;i<=n;i++)printf("%d ",a[i]);
// printf("\n");
smm=;
for(i=;i<=n;i++)smm+=a[i];
if(smm!=n*(n-)/){printf("0\n");continue;}
smm=n*(n-)/;
S=;T=smm+n+;
int ans=;
for(i=;i<=n;i++){
if(solve(i))ans=i;
else break;
}
printf("%d\n",ans);
}
return ;
}

 

POJ2699 The Maximum Number of Strong Kings的更多相关文章

  1. POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)

    The Maximum Number of Strong Kings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2488 ...

  2. POJ2699 The Maximum Number of Strong Kings(最大流)

    枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...

  3. 【POJ2699】The Maximum Number of Strong Kings(网络流)

    Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...

  4. POJ 2699 The Maximum Number of Strong Kings Description

    The Maximum Number of Strong Kings   Description A tournament can be represented by a complete graph ...

  5. 【POJ2699】The Maximum Number of Strong Kings(二分,最大流)

    题意: 有n个队伍,两两都有比赛 知道最后每支队伍获胜的场数 求最多有多少队伍,他们战胜了所有获胜场数比自己多的队伍,这些队伍被称为SK N<=50 思路:把每个队伍和它们两两之间的比赛都当做点 ...

  6. 【poj2699】 The Maximum Number of Strong Kings

    http://poj.org/problem?id=2699 (题目链接) 题意 给出1张有向完全图.U->V表示U可以打败V并得一分.如果一个人的得分最高,或者他打败所有比自己得分高的人,那么 ...

  7. The Maximum Number of Strong Kings

    poj2699:http://poj.org/problem?id=2699 题意:n个人,进行n*(n-1)/2场比赛,赢一场则得到一分.如果一个人打败了所有比他分数高的对手,或者他就是分数最高的, ...

  8. 【POJ】【2699】The Maximum Number of Strong Kings

    网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...

  9. POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)

    http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...

随机推荐

  1. Cordova - 使用Cordova开发iOS应用实战1(配置、开发第一个应用)

    Cordova - 使用Cordova开发iOS应用实战1(配置.开发第一个应用) 现在比较流行使用 html5 开发移动应用,毕竟只要写一套html页面就可以适配各种移动设备,大大节省了跨平台应用的 ...

  2. centos7下使用yum安装mysql数据库以及设置远程访问

    CentOS7的yum源中默认好像是没有mysql的.为了解决这个问题,我们要先下载mysql的repo源. 1. 下载mysql的repo源 $ wget http://repo.mysql.com ...

  3. int,long,unsigned的值范围

    unsigned   int   0-4294967295   int   2147483648-2147483647 unsigned long 0-4294967295long   2147483 ...

  4. js的几种排序

    转载:http://www.jb51.net/article/81520.htm 一.冒泡排序 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

  5. [BZOJ1263][SCOI2006]整数划分(数学+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1263 分析:数学老师上课讲过啦= =,就是尽可能3越多越好.然后就写个高精度就行了.

  6. VS2013 无法在Web服务器上启动调试。IIS未列出与打开的URL匹配的网站。

    出现这个问题的原因是:没有用管理员权限运行VS2013. 本来遇到这个问题的时候,不知道什么原因.后来附加到进程调试的时候,提示要以管理员身份运行.才知道啥原因.

  7. windows server2008 r2 下启用 sqlserver 2008的远程连接

    首先说明,本文转自互联网. TMD 花了二天,终于找到怎么开启这个远程连接了.....娘的,累死了,写下来,希望能帮助同胞们... 用win server 2008 r2 和sql server 20 ...

  8. jQuery基础--样式篇(2)

    老套路,最开始上手就是写一个“Hello world!”,使用jQuery后获取元素十分简单,如下面获取div的对象,原生的javascript代码:document.getElementsByTag ...

  9. 美发屋App-业余爱好

    出于个人爱好, 自行设计了一款APP,由于时间有限,APP目前只做了3天,现大四,急求一份实习工作,月薪3K左右即可! 软件UI设计到编码,全部又我一人完成,所以工作量比较大 底部采用·Fragmen ...

  10. Android判断Touch为滑动事件还是操作控件

    Android判断Touch为滑动事件还是操作控件 因为在项目中要判断WebView是否处于滚动状态,但它不像ListView有onScrollStateChanged方法来监听,要实现就得手动监听它 ...