Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2102   Accepted: 975

Description

A tournament can be represented by a complete graph in which each vertex denotes a player and a directed edge is from vertex x to vertex y if player x beats player y. For a player x in a tournament T, the score of x is the number of players beaten by x. The score sequence of T, denoted by S(T) = (s1, s2, . . . , sn), is a non-decreasing list of the scores of all the players in T. It can be proved that S(T) = (s1, s2, . . . , sn) is a score sequence of T if and only if 
for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores. 
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2. 

Input

The first line of the input file contains an integer m, m <= 10, which represents the number of test cases. The following m lines contain m score sequences in which each line contains a score sequence. Note that each score sequence contains at most ten scores.

Output

The maximum number of strong kings for each test case line by line.

Sample Input

5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3

Sample Output

2
4
5
3
5

Source

网络流 最大流

将代表每场比赛的边记为流量图中的点,从S到每场比赛连边,容量为1;

从每个参赛者到T连边,容量为胜利场数。

假设king是胜场最多的前king个人,将参赛者a[]按胜利次数从大到小排序,方便连边。枚举或者二分king数量(n<=10,复杂度没啥差别),对于每场比赛,如果其中一方a是king,且另一方b胜场更多,那么将边强行定向,从比赛到a连边,容量为1(表示胜利);否则a和b都可以胜利,就将边看作双向边,比赛到a、b各连一条边,容量为1。

↑如果能跑满流,那么当前选取的king个数可行。

(测试数据格式似乎很诡异,以下代码中,如果读入方式换成注释掉的部分,本地手测都能过,交上去就WA)

刚开始有另一种设想:

  将参赛者拆点,S到每个入点连边,容量为此人胜场a[i],每个出点到T连边,容量为此人负场n-1-a[i]。

  枚举king的个数,每多加一个人,就在前一步的参量网络上添边,看网络流能否增广,能就继续加king人数。

  但是这种算法在测discuss里的大数据时就挂掉了。

  ↑姑且记个思路。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
#define LL long long
using namespace std;
const int mx[]={,,,-,};
const int my[]={,,,,-};
const int mxn=;
int a[mxn],n=;
int cmp(const int q,const int e){return q>e;}
void read(){
char s[];
/* fgets(s,200,stdin);
int len=strlen(s);
for(int i=0;i<len;i++){
int x=0,f=1;char ch=s[i];
while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=s[++i];}
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=s[++i];}
a[++n]=x;
}*/
gets(s);
int len=strlen(s);
for(int i=;i<len;i++){
if(s[i]>='' && s[i]<='')a[++n]=(s[i]-'');
}
return;
}
struct edge{int v,nxt,f;}e[mxn*mxn*];
int hd[mxn],mct=;
inline void add_edge(int u,int v,int f){
e[++mct].v=v;e[mct].f=f;e[mct].nxt=hd[u];hd[u]=mct;return;
}
inline void ins(int u,int v,int f){add_edge(u,v,f);add_edge(v,u,);return;}
int S,T;
int id[][];
int bct=;
void init(){
memset(hd,,sizeof hd);
n=;mct=;bct=;
return;
}
void init2(){
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
id[i][j]=id[j][i]=++bct;
return;
}
int d[mxn];
bool BFS(){
memset(d,,sizeof d);
queue<int>q;
d[S]=;
q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
if(u==T)return lim;
int tmp,f=;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f){
tmp=DFS(v,min(lim,e[i].f));
e[i].f-=tmp;
e[i^].f+=tmp;
f+=tmp;
lim-=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,1e9);
return res;
}
int smm=;
bool solve(int lim){
int i,j;
memset(hd,,sizeof hd);
mct=;
for(i=;i<=smm;i++)ins(S,i,);
for(i=;i<=n;i++)ins(smm+i,T,a[i]);//胜场
int hd=;
for(i=;i<=n;i++)
for(j=;j<=i;j++){
if(i==j)continue;
if(i<=lim && a[i]<a[j])ins(id[i][j],smm+i,);
else{
ins(id[i][j],smm+i,);
ins(id[i][j],smm+j,);
}
}
if(Dinic()==smm)return ;
return ;
}
int m;
int main()
{
scanf("%d\n",&m);
int i,j;
while(m--){
init();//
read();
sort(a+,a+n+,cmp);
init2();
// for(i=1;i<=n;i++)printf("%d ",a[i]);
// printf("\n");
smm=;
for(i=;i<=n;i++)smm+=a[i];
if(smm!=n*(n-)/){printf("0\n");continue;}
smm=n*(n-)/;
S=;T=smm+n+;
int ans=;
for(i=;i<=n;i++){
if(solve(i))ans=i;
else break;
}
printf("%d\n",ans);
}
return ;
}

 

POJ2699 The Maximum Number of Strong Kings的更多相关文章

  1. POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)

    The Maximum Number of Strong Kings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2488 ...

  2. POJ2699 The Maximum Number of Strong Kings(最大流)

    枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...

  3. 【POJ2699】The Maximum Number of Strong Kings(网络流)

    Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...

  4. POJ 2699 The Maximum Number of Strong Kings Description

    The Maximum Number of Strong Kings   Description A tournament can be represented by a complete graph ...

  5. 【POJ2699】The Maximum Number of Strong Kings(二分,最大流)

    题意: 有n个队伍,两两都有比赛 知道最后每支队伍获胜的场数 求最多有多少队伍,他们战胜了所有获胜场数比自己多的队伍,这些队伍被称为SK N<=50 思路:把每个队伍和它们两两之间的比赛都当做点 ...

  6. 【poj2699】 The Maximum Number of Strong Kings

    http://poj.org/problem?id=2699 (题目链接) 题意 给出1张有向完全图.U->V表示U可以打败V并得一分.如果一个人的得分最高,或者他打败所有比自己得分高的人,那么 ...

  7. The Maximum Number of Strong Kings

    poj2699:http://poj.org/problem?id=2699 题意:n个人,进行n*(n-1)/2场比赛,赢一场则得到一分.如果一个人打败了所有比他分数高的对手,或者他就是分数最高的, ...

  8. 【POJ】【2699】The Maximum Number of Strong Kings

    网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...

  9. POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)

    http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...

随机推荐

  1. GET请求参数为中文时乱码分析

    问题描述 近期做任务时,跟后端联调时遇到一个问题,前端发送get请求,当参数值有中文时,请求失败,请求参数变为乱码.(ps:一般当参数有中文时,很少使用get请求,而是使用post请求来传输数据,请求 ...

  2. 在线音乐网站【04】Part two 功能实现

       上一篇博客里面已近总结了三个功能的具体实现,今天把剩余功能的具体实现补充总结,如果你想对整个小项目有清楚的了解,建议去看下前几篇博客. 1.在线音乐网站(1)需求和功能结构 2.在线音乐网站(2 ...

  3. ASP.NET的编译原理

    http://www.cnblogs.com/mdy2001212/archive/2008/01/31/1060345.html

  4. 突破自我,开源NetWorkSocket通讯组件

    前言 在<化茧成蝶,开源NetWorkSocket通讯组件>发表之后,收到大家很多个star,在此感谢!更可贵的是,一些网友提出了许多好建议,经过一些时间的思考,决定将NetworkSoc ...

  5. Linux C中结构体初始化

          在阅读GNU/Linux内核代码时,我们会遇到一种特殊的结构初始化方式.该方式是某些C教材(如谭二版.K&R二版)中没有介绍过的.这种方式称为指定初始化(designated in ...

  6. MATLAB如何定义函数

    自定义函数的途径:M文件函数(M file function)在线函数(Inline Function)匿名函数(Anonymous Function)1.M文件函数范例function c=myad ...

  7. A Regularized Competition Model for Question Diffi culty Estimation in Community Question Answering Services-20160520

    1.Information publication:EMNLP 2014 author:Jing Liu(在前一篇sigir基础上,拓展模型的论文) 2.What 衡量CQA中问题的困难程度,提出从两 ...

  8. [转]java 输出流转输入流

    ByteArrayOutputStream.toByteArray ByteArrayInputStream StringWriter.toString StringReader 字符流和二进制流是j ...

  9. Collection中Set集合在应用中常见的方法和注意点

    Set集合 : 元素无序的,元素不允许重复.      ---->HashSet  : 存值方式使用哈希表来存值的.                   原理 :  如果HashSet中存放对象 ...

  10. linux基础-第十四单元 Linux网络原理及基础设置

    第十四单元 Linux网络原理及基础设置 三种网卡模式图 使用ifconfig命令来维护网络 ifconfig命令的功能 ifconfig命令的用法举例 使用ifup和ifdown命令启动和停止网卡 ...