POJ2699 The Maximum Number of Strong Kings
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2102 | Accepted: 975 |
Description

for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores.
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2.

Input
Output
Sample Input
5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3
Sample Output
2
4
5
3
5
Source
网络流 最大流
将代表每场比赛的边记为流量图中的点,从S到每场比赛连边,容量为1;
从每个参赛者到T连边,容量为胜利场数。
假设king是胜场最多的前king个人,将参赛者a[]按胜利次数从大到小排序,方便连边。枚举或者二分king数量(n<=10,复杂度没啥差别),对于每场比赛,如果其中一方a是king,且另一方b胜场更多,那么将边强行定向,从比赛到a连边,容量为1(表示胜利);否则a和b都可以胜利,就将边看作双向边,比赛到a、b各连一条边,容量为1。
↑如果能跑满流,那么当前选取的king个数可行。
(测试数据格式似乎很诡异,以下代码中,如果读入方式换成注释掉的部分,本地手测都能过,交上去就WA)
刚开始有另一种设想:
将参赛者拆点,S到每个入点连边,容量为此人胜场a[i],每个出点到T连边,容量为此人负场n-1-a[i]。
枚举king的个数,每多加一个人,就在前一步的参量网络上添边,看网络流能否增广,能就继续加king人数。
但是这种算法在测discuss里的大数据时就挂掉了。
↑姑且记个思路。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
#define LL long long
using namespace std;
const int mx[]={,,,-,};
const int my[]={,,,,-};
const int mxn=;
int a[mxn],n=;
int cmp(const int q,const int e){return q>e;}
void read(){
char s[];
/* fgets(s,200,stdin);
int len=strlen(s);
for(int i=0;i<len;i++){
int x=0,f=1;char ch=s[i];
while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=s[++i];}
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=s[++i];}
a[++n]=x;
}*/
gets(s);
int len=strlen(s);
for(int i=;i<len;i++){
if(s[i]>='' && s[i]<='')a[++n]=(s[i]-'');
}
return;
}
struct edge{int v,nxt,f;}e[mxn*mxn*];
int hd[mxn],mct=;
inline void add_edge(int u,int v,int f){
e[++mct].v=v;e[mct].f=f;e[mct].nxt=hd[u];hd[u]=mct;return;
}
inline void ins(int u,int v,int f){add_edge(u,v,f);add_edge(v,u,);return;}
int S,T;
int id[][];
int bct=;
void init(){
memset(hd,,sizeof hd);
n=;mct=;bct=;
return;
}
void init2(){
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
id[i][j]=id[j][i]=++bct;
return;
}
int d[mxn];
bool BFS(){
memset(d,,sizeof d);
queue<int>q;
d[S]=;
q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
if(u==T)return lim;
int tmp,f=;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f){
tmp=DFS(v,min(lim,e[i].f));
e[i].f-=tmp;
e[i^].f+=tmp;
f+=tmp;
lim-=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,1e9);
return res;
}
int smm=;
bool solve(int lim){
int i,j;
memset(hd,,sizeof hd);
mct=;
for(i=;i<=smm;i++)ins(S,i,);
for(i=;i<=n;i++)ins(smm+i,T,a[i]);//胜场
int hd=;
for(i=;i<=n;i++)
for(j=;j<=i;j++){
if(i==j)continue;
if(i<=lim && a[i]<a[j])ins(id[i][j],smm+i,);
else{
ins(id[i][j],smm+i,);
ins(id[i][j],smm+j,);
}
}
if(Dinic()==smm)return ;
return ;
}
int m;
int main()
{
scanf("%d\n",&m);
int i,j;
while(m--){
init();//
read();
sort(a+,a+n+,cmp);
init2();
// for(i=1;i<=n;i++)printf("%d ",a[i]);
// printf("\n");
smm=;
for(i=;i<=n;i++)smm+=a[i];
if(smm!=n*(n-)/){printf("0\n");continue;}
smm=n*(n-)/;
S=;T=smm+n+;
int ans=;
for(i=;i<=n;i++){
if(solve(i))ans=i;
else break;
}
printf("%d\n",ans);
}
return ;
}
POJ2699 The Maximum Number of Strong Kings的更多相关文章
- POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)
The Maximum Number of Strong Kings Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2488 ...
- POJ2699 The Maximum Number of Strong Kings(最大流)
枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...
- 【POJ2699】The Maximum Number of Strong Kings(网络流)
Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...
- POJ 2699 The Maximum Number of Strong Kings Description
The Maximum Number of Strong Kings Description A tournament can be represented by a complete graph ...
- 【POJ2699】The Maximum Number of Strong Kings(二分,最大流)
题意: 有n个队伍,两两都有比赛 知道最后每支队伍获胜的场数 求最多有多少队伍,他们战胜了所有获胜场数比自己多的队伍,这些队伍被称为SK N<=50 思路:把每个队伍和它们两两之间的比赛都当做点 ...
- 【poj2699】 The Maximum Number of Strong Kings
http://poj.org/problem?id=2699 (题目链接) 题意 给出1张有向完全图.U->V表示U可以打败V并得一分.如果一个人的得分最高,或者他打败所有比自己得分高的人,那么 ...
- The Maximum Number of Strong Kings
poj2699:http://poj.org/problem?id=2699 题意:n个人,进行n*(n-1)/2场比赛,赢一场则得到一分.如果一个人打败了所有比他分数高的对手,或者他就是分数最高的, ...
- 【POJ】【2699】The Maximum Number of Strong Kings
网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...
- POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)
http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...
随机推荐
- JAVA_HOME环境变量失效的解决办法
晚上把oracle自带的weblogic给卸载了,然后打开eclipse,发现报错了:Error: could not open `C:\Java\jre7\lib\amd64\jvm.cfg' JA ...
- 数据库MySQL与Oracle的一些去O注意项
一.oracle递归查询语句start with ...connect by prior ① 给你一张表,表里面有主键id,以及该项的父节点parent_id,查询出该表中所有的父子关系节点树? Or ...
- swift——uiwebview的使用
首先,创建一个label: agreeDeal = UILabel() let tap = UITapGestureRecognizer.init(target: self, action: #sel ...
- 【一】我眼中的FeatureLayer
1.来源 MapService 或者 FeatureService(10.0后)中的一个图层 Tabel 动态空间 2.使用 符号化 首先看下FLyr的继承关系:FeatureLayer Graph ...
- PageRank算法简介及Map-Reduce实现
PageRank对网页排名的算法,曾是Google发家致富的法宝.以前虽然有实验过,但理解还是不透彻,这几天又看了一下,这里总结一下PageRank算法的基本原理. 一.什么是pagerank Pag ...
- ASP.NET 小白从零开始建站简易教程 (一)域名、虚拟主机、FTP上传文件
只考虑性价比,纯新手实验无备案.跟着步骤走半小时即可收获独立的个人网站一枚! 我的实验站 http://www.bearlab.site/ ⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄ 目前总价花费86元(域名加虚 ...
- .NET基于Redis缓存实现单点登录SSO的解决方案
一.基本概念 最近公司的多个业务系统要统一整合使用同一个登录,这就是我们耳熟能详的单点登录,现在就NET基于Redis缓存实现单点登录做一个简单的分享. 单点登录(Single Sign On),简称 ...
- gocode+auto-complete搭建emacs的go语言自动补全功能
上篇随笔记录了在emacs中使用go-mode和goflymake搭建了go语言的简单编程环境(推送门),今天来记录一下使用gocode+auto-complete配置emacs中go语言的自动补全功 ...
- JavaScript学习笔记-商品管理新增/删除/修改功能
<!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- rar 命令
1 wger http://www.rarlab.com/rar/rarlinux-3.9.2.tar.gz 下载文件包 会下载在当前目录 2 cp xxx.xxx ../ 复制xxx.xxx到上个目 ...