[SCOI2005]最大子矩阵 (动态规划)
题目描述
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
输入输出格式
输入格式:
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
输出格式:
只有一行为k个子矩阵分值之和最大为多少。
输入输出样例
3 2 2
1 -3
2 3
-2 3
Solution
状态定义:
f[i][l] 表示到第 i 个点 用掉 l 个矩形的最大值.
转移方程:
for(pre 1--> i-1)
f[i][l]=max(f[i-1][l],f[pre][l-1]+sum[pre-->i]); //sum 表示pre到i的元素值的和.
于是 m=1 便有30 pts.
然后再想 m=2 , 由 m=1 拓展?
于是 定义状态 : f[ i ][ j ][ l ] 表示上面一列到了 i 下面一列到了 j 已选择 l 个矩阵的最大值.
想了想,m=2有一下几种情况:
1. 这个点我不做拓展 --> max( f[ i-1 ][ j-1 ][ l ] , f[ i-1 ][ j-1 ][ l ] ,f[ i ][ j-1 ][ l ] ) ;
2. 由上一列扩展一个小的 s*1 面积的
3. 由上一列扩展一个小的 s*1 面积的
4. 两列都作扩展 ,来一个 s*2 面积的
于是乎,这道题的 DP 也自然就出来了.
代码
#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int f1[][],f[][][];
int c[][],sum[][]; void solve()
{
for(int i=;i<=n;i++)
for(int l=;l<=k;l++)
{
f1[i][l]=f1[i-][l];
for(int j=;j<i;j++)
f1[i][l]=max(f1[j][l-]+sum[][i]-sum[][j],f1[i][l]);
}
cout<<f1[n][k];
return;
} int main()
{
cin>>n>>m>>k;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&c[j][i]),sum[j][i]=sum[j][i-]+c[j][i];
if(m==) {solve();return ;} for(int l=;l<=k;l++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
f[i][j][l]=max(f[i-][j][l],f[i][j-][l]);
for(int pre=;pre<i;pre++) f[i][j][l]=max(f[i][j][l],f[pre][j][l-]+sum[][i]-sum[][pre]);
for(int pre=;pre<j;pre++) f[i][j][l]=max(f[i][j][l],f[i][pre][l-]+sum[][j]-sum[][pre]);
if(i==j)
for(int pre=;pre<i;pre++)
f[i][j][l]=max(f[i][j][l],f[pre][pre][l-]+sum[][i]-sum[][pre]+sum[][j]-sum[][pre]);
}
cout<<f[n][n][k]; return ;
}
[SCOI2005]最大子矩阵 (动态规划)的更多相关文章
- BZOJ1084 [SCOI2005]最大子矩阵 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...
- BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划
传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵
http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...
- 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)
1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...
- BZOJ(6) 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3566 Solved: 1785[Submit][Sta ...
- [Luogu 2331] [SCOI2005]最大子矩阵
[Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
随机推荐
- iOS,APP退到后台,获取推送成功的内容并且语音播报内容。
老铁,我今天忙了一下午就为解决这个问题,网上有一些方法,说了一堆关于这个挂到后台收到推送并且获得推送内容的问题,有很多人都说APP挂到后台一会就被杀死.但实际上可以有办法解决的. WechatIMG3 ...
- 一个batch如何通过一个网络
一个batch下所有的图片一起经过整个网络,不是说一张图片经过网络后再让下一张进入网络,这样一个batch一起通过网络计算速度比一张一张这样快
- CPP-基础:wchar_t
目 录 1简介 2例如 3将char转换成wchar_t 1.简介 wchar_t是C/C++的字符数据类型,是一种扩展的字符存储方式,wchar_t类型主要用在国际化程序的实现中,但它不等同于uni ...
- python-DB模块实例
MySQLdb其实有点像php或asp中连接数据库的一个模式了,只是MySQLdb是针对mysql连接了接口,我们可以在python中连接MySQLdb来实现数据的各种操作. python连接mysq ...
- iPhone Scrollbars with iScroll
Since we've had web browsers and JavaScript, we've been intent on replacing native browser functiona ...
- Bootstrap 网页乱码
问题:今天早上在实践bootstrap的时候,用EditPlus写代码,标签中包含了中文.在浏览器解析的时候中文部分生成的乱码.但是网页部分已经声明了使用utf-8的编码方式. 解决:网页字体正常显示 ...
- shell脚本,一个经典题目。
[root@localhost wyb]# cat zhuijiu.sh #!/bin/bash #.写一个脚本执行后,输入名字,产生随机数01-99之间的数字. #.如果相同的名字重复输入,抓到的数 ...
- Mac 输入法小技巧
相信使用Mac的朋友第一次使用Mac首先要考虑的就是输入法的问题,现在越来越多的第三方输入法都开始支持Mac平台,是否有同学仍然执着于看似“不符”国人习惯用法的OS X自带拼音输入法呢?自带的拼音输入 ...
- Java多线程大合集
1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线程完成 ...
- 文件读写FILE类
1. 新建一个文件: FILE *f = fopen("a.txt","w+"); (1)fopen()函数介绍fopen的原型是:FILE *fopen(co ...