Area
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5811   Accepted: 2589

Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.



Figure 1: Example area.

You are hired to write a program that calculates the area occupied
by the new facility from the movements of a robot along its walls. You
can assume that this area is a polygon with corners on a rectangular
grid. However, your boss insists that you use a formula he is so proud
to have found somewhere. The formula relates the number I of grid points
inside the polygon, the number E of grid points on the edges, and the
total area A of the polygon. Unfortunately, you have lost the sheet on
which he had written down that simple formula for you, so your first
task is to find the formula yourself.

Input

The first line contains the number of scenarios.

For each scenario, you are given the number m, 3 <= m < 100,
of movements of the robot in the first line. The following m lines
contain pairs 揹x dy�of integers, separated by a single blank, satisfying
.-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means
that the robot moves on to a grid point dx units to the right and dy
units upwards on the grid (with respect to the current position). You
can assume that the curve along which the robot moves is closed and that
it does not intersect or even touch itself except for the start and end
points. The robot moves anti-clockwise around the building, so the area
to be calculated lies to the left of the curve. It is known in advance
that the whole polygon would fit into a square on the grid with a side
length of 100 units.

Output

The
output for every scenario begins with a line containing 揝cenario #i:�
where i is the number of the scenario starting at 1. Then print a single
line containing I, E, and A, the area A rounded to one digit after the
decimal point. Separate the three numbers by two single blanks.
Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0 题意:一个多边形从某个点出发(假设从0,0出发),每次有一个增量(dx,dy)!=(0,0) 经过n次之后又回到了原点
组成了一个简单多边形.问此时多边形内部的整点的数量,多边形边上的整点的数量,多边形的面积. Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的整点数,b表示
多边形边界上的整点数,s表示多边形的面积。(ps:整点是x,y坐标都是整数)
每条边上的格点数(顶点只算终点) = gcd(abs(x2-x1),abs(y2-y1))
///题意:一个多边形从某个点出发(假设从0,0出发),每次有一个增量(dx,dy)!=(0,0) 经过n次之后又回到了原点
///组成了一个简单多边形.问此时多边形内部的整点的数量,多边形边上的整点的数量,多边形的面积.
///Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的整点数,b表示
///多边形边界上的整点数,s表示多边形的面积。(ps:整点是x,y坐标都是整数)
///每条边上的格点数 = gcd(abs(x2-x1),abs(y2-y1))
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
const int N =;
struct Point {
int x,y;
}p[N];
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int cross(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
int main()
{
int tcase;
scanf("%d",&tcase);
int k = ;
while(tcase--){
int n;
scanf("%d",&n);
p[].x = ,p[].y = ;
int On=,In=;
double area=;
for(int i=;i<=n;i++){
int dx,dy;
scanf("%d%d",&dx,&dy);
p[i].x= p[i-].x+dx;
p[i].y=p[i-].y+dy;
On+=gcd(abs(dx),abs(dy));
}
for(int i=;i<n-;i++){
area+=cross(p[i],p[i+],p[])/2.0;
}
In = (int)(area+-On/);
printf("Scenario #%d:\n%d %d %.1lf\n\n",k++,In,On,area);
}
return ;
}

poj 2954

http://acm.pku.edu.cn/JudgeOnline/problem?id=2954

///题意:完全包含在三角形内的整点有多少
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
struct Point {
int x,y;
}p1,p2,p3;
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int cross(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
int main()
{
while(scanf("%d%d%d%d%d%d",&p1.x,&p1.y,&p2.x,&p2.y,&p3.x,&p3.y)!=EOF){
if(p1.x==&&p1.y==&&p2.x==&&p2.y==&&p3.x==&&p3.y==) break;
double area = fabs(cross(p2,p3,p1)/2.0); int On = gcd(abs(p2.x-p1.x),abs(p2.y-p1.y))+gcd(abs(p3.x-p2.x),abs(p3.y-p2.y))+gcd(abs(p3.x-p1.x),abs(p3.y-p1.y));
printf("%d\n",(int)(area+-On/));
}
return ;
}

poj 1265&&poj 2954(Pick定理)的更多相关文章

  1. poj 1265 Area(Pick定理)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5666   Accepted: 2533 Description ...

  2. POJ 1265 Area (pick定理)

    题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...

  3. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  4. 【POJ】2954 Triangle(pick定理)

    http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...

  5. poj 2954 Triangle(Pick定理)

    链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

  6. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  7. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  8. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  9. [poj 1265]Area[Pick定理][三角剖分]

    题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...

随机推荐

  1. Win7更换锁屏和开机画面

    技术交流群:233513714 每次开机被Windows千年不变的开机画面和锁屏画面丑到的小伙伴们可以看过来,通过简单的几步就可以改掉系统默认的开机画面. 1.首先Windows+r键输入regedi ...

  2. 以+scheduledTimerWithTimeInterval...的方式触发的timer,在滑动页面上的列表时,timer会暂定回调,为什么?如何解决?

    这里强调一点:在主线程中以+scheduledTimerWithTimeInterval...的方式触发的timer默认是运行在NSDefaultRunLoopMode模式下的,当滑动页面上的列表时, ...

  3. 七夕蠕虫“XX神器”逆向分析

    转载请注明出处 ____________________________________________________________________________________________ ...

  4. 使用java去对比2个带数学公式的字符串

    首先大家看到这个题目,可能会不屑一顾,呵呵,是的,起初我也认为这是个很简单的任务,当任务拿到手里后,经过我作为程序员来讲已经磨炼的无比通透的大脑来讲发现这其实是个坑. 故事的起因是这样的,想开发一款给 ...

  5. BeanShell中Sring变量引用

    问题现象:BeanShell中,一个String类型的字符串存在多个变量,通过${}引用变量后,发送到服务器的还是${} 解决方法:String类型数据中存在多个变量时,使用"+变量+&qu ...

  6. IPMITool driver

    官网链接: https://docs.openstack.org/ironic/latest/admin/drivers/ipmitool.html IPMITool driver 概述IPMI(In ...

  7. win10&hyper上装Ubuntu出现没有找到dev fd0, sector 0 错误

    win10 hyper装 ubuntu blk_update_request:I/O error,dev sr0,sector0 错误 配置好安装重启后出现 blk_update_request: I ...

  8. MIFARE Classic S50技术详解

    Mifare Classic 简介 MIFARE Classic是恩智浦半导体开发的可用于非接触式智能卡,符合ISO/IEC 14443 A类标准.用于公共交通票证等应用,还可用于各类其他应用有S20 ...

  9. Angular & RxJS & Typesc­ript

    Angular & RxJS & Typesc­ript https://www.wmnetwork.cc/d/?mid=75627 杭州经开区国际创博中心 https://www.w ...

  10. 【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...