poj 1265&&poj 2954(Pick定理)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5811 | Accepted: 2589 |
Description
Figure 1: Example area.
You are hired to write a program that calculates the area occupied
by the new facility from the movements of a robot along its walls. You
can assume that this area is a polygon with corners on a rectangular
grid. However, your boss insists that you use a formula he is so proud
to have found somewhere. The formula relates the number I of grid points
inside the polygon, the number E of grid points on the edges, and the
total area A of the polygon. Unfortunately, you have lost the sheet on
which he had written down that simple formula for you, so your first
task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100,
of movements of the robot in the first line. The following m lines
contain pairs 揹x dy�of integers, separated by a single blank, satisfying
.-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means
that the robot moves on to a grid point dx units to the right and dy
units upwards on the grid (with respect to the current position). You
can assume that the curve along which the robot moves is closed and that
it does not intersect or even touch itself except for the start and end
points. The robot moves anti-clockwise around the building, so the area
to be calculated lies to the left of the curve. It is known in advance
that the whole polygon would fit into a square on the grid with a side
length of 100 units.
Output
output for every scenario begins with a line containing 揝cenario #i:�
where i is the number of the scenario starting at 1. Then print a single
line containing I, E, and A, the area A rounded to one digit after the
decimal point. Separate the three numbers by two single blanks.
Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0 题意:一个多边形从某个点出发(假设从0,0出发),每次有一个增量(dx,dy)!=(0,0) 经过n次之后又回到了原点
组成了一个简单多边形.问此时多边形内部的整点的数量,多边形边上的整点的数量,多边形的面积. Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的整点数,b表示
多边形边界上的整点数,s表示多边形的面积。(ps:整点是x,y坐标都是整数)
每条边上的格点数(顶点只算终点) = gcd(abs(x2-x1),abs(y2-y1))
///题意:一个多边形从某个点出发(假设从0,0出发),每次有一个增量(dx,dy)!=(0,0) 经过n次之后又回到了原点
///组成了一个简单多边形.问此时多边形内部的整点的数量,多边形边上的整点的数量,多边形的面积.
///Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的整点数,b表示
///多边形边界上的整点数,s表示多边形的面积。(ps:整点是x,y坐标都是整数)
///每条边上的格点数 = gcd(abs(x2-x1),abs(y2-y1))
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
const int N =;
struct Point {
int x,y;
}p[N];
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int cross(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
int main()
{
int tcase;
scanf("%d",&tcase);
int k = ;
while(tcase--){
int n;
scanf("%d",&n);
p[].x = ,p[].y = ;
int On=,In=;
double area=;
for(int i=;i<=n;i++){
int dx,dy;
scanf("%d%d",&dx,&dy);
p[i].x= p[i-].x+dx;
p[i].y=p[i-].y+dy;
On+=gcd(abs(dx),abs(dy));
}
for(int i=;i<n-;i++){
area+=cross(p[i],p[i+],p[])/2.0;
}
In = (int)(area+-On/);
printf("Scenario #%d:\n%d %d %.1lf\n\n",k++,In,On,area);
}
return ;
}
poj 2954
http://acm.pku.edu.cn/JudgeOnline/problem?id=2954
///题意:完全包含在三角形内的整点有多少
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
struct Point {
int x,y;
}p1,p2,p3;
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int cross(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
int main()
{
while(scanf("%d%d%d%d%d%d",&p1.x,&p1.y,&p2.x,&p2.y,&p3.x,&p3.y)!=EOF){
if(p1.x==&&p1.y==&&p2.x==&&p2.y==&&p3.x==&&p3.y==) break;
double area = fabs(cross(p2,p3,p1)/2.0); int On = gcd(abs(p2.x-p1.x),abs(p2.y-p1.y))+gcd(abs(p3.x-p2.x),abs(p3.y-p2.y))+gcd(abs(p3.x-p1.x),abs(p3.y-p1.y));
printf("%d\n",(int)(area+-On/));
}
return ;
}
poj 1265&&poj 2954(Pick定理)的更多相关文章
- poj 1265 Area(Pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5666 Accepted: 2533 Description ...
- POJ 1265 Area (pick定理)
题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...
- POJ 1265 Area POJ 2954 Triangle Pick定理
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5227 Accepted: 2342 Description ...
- 【POJ】2954 Triangle(pick定理)
http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...
- poj 2954 Triangle(Pick定理)
链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS Memory Limit: 65536K Total Submissio ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- poj 1265 Area(pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...
- [poj 1265]Area[Pick定理][三角剖分]
题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...
随机推荐
- Javascript Step by Step - 02
DOM 操作 DOM是面向HTML和XML文档的API,为文档提供了结构化表示.在DOM中一切都是节点Node,文档就是由许多的Node组成的.文档里的每个节点都有属性 nodeName.nodeVa ...
- POJ 3461 Oulipo(字符串hash)
题目链接 字符串hash判断字符串是否相等. code #include<cstdio> #include<algorithm> #include<cstring> ...
- Django将queryset转为json对象
- Eclipse 工作空间(Workspace)---Eclipse教程第07课
Eclipse 工作空间(Workspace) eclipse 工作空间包含以下资源: 项目 文件 文件夹 项目启动时一般可以设置工作空间,你可以将其设置为默认工作空间,下次启动后无需再配置: 工作空 ...
- PHP字符串word末字符大小写互换
要求 给出一个字符串如 “A journey of, a thousand 'miles' must can't \"begin\" with a single step.” ,通 ...
- [译]14-spring 集合元素的注入
前面的文章已经介绍了如何往bean里面注入原始类型和引用类型.我们使用bean元素的contructor-arg或property子 元素的value属性注入java原始类型;同理,我们可以使用bea ...
- XGBoost——机器学习--周振洋
XGBoost——机器学习(理论+图解+安装方法+python代码) 目录 一.集成算法思想 二.XGBoost基本思想 三.MacOS安装XGBoost 四.用python实现XGBoost算法 在 ...
- UTXO是什么?
以易于理解的方式解释了比特币交易中的"UTXO" UTXO 2017年11月1日 让我们看看当你发一点硬币时会发生什么. 比特币交易通过UTXO执行.通过在比特硬币的所有交易中新生 ...
- ajax-高设3
ajax 1.XHR Ajax 技术的核心是 XMLHttpRequest 对象(简称 XHR),这是由微软首先引入的一个特性,其他浏览器提供商后来都提供了相同的实现.在 XHR 出现之前,Ajax ...
- DOM对象转化成jQuery对象
相比较jQuery转化成DOM,开发中更多的情况是把一个DOM对象加工成jQuery对象.$(参数)是一个多功能的方法,通过传递不同的参数而产生不同的作用. 如果传递给$(DOM)函数的参数是一个DO ...