Area
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5811   Accepted: 2589

Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.



Figure 1: Example area.

You are hired to write a program that calculates the area occupied
by the new facility from the movements of a robot along its walls. You
can assume that this area is a polygon with corners on a rectangular
grid. However, your boss insists that you use a formula he is so proud
to have found somewhere. The formula relates the number I of grid points
inside the polygon, the number E of grid points on the edges, and the
total area A of the polygon. Unfortunately, you have lost the sheet on
which he had written down that simple formula for you, so your first
task is to find the formula yourself.

Input

The first line contains the number of scenarios.

For each scenario, you are given the number m, 3 <= m < 100,
of movements of the robot in the first line. The following m lines
contain pairs 揹x dy�of integers, separated by a single blank, satisfying
.-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means
that the robot moves on to a grid point dx units to the right and dy
units upwards on the grid (with respect to the current position). You
can assume that the curve along which the robot moves is closed and that
it does not intersect or even touch itself except for the start and end
points. The robot moves anti-clockwise around the building, so the area
to be calculated lies to the left of the curve. It is known in advance
that the whole polygon would fit into a square on the grid with a side
length of 100 units.

Output

The
output for every scenario begins with a line containing 揝cenario #i:�
where i is the number of the scenario starting at 1. Then print a single
line containing I, E, and A, the area A rounded to one digit after the
decimal point. Separate the three numbers by two single blanks.
Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0 题意:一个多边形从某个点出发(假设从0,0出发),每次有一个增量(dx,dy)!=(0,0) 经过n次之后又回到了原点
组成了一个简单多边形.问此时多边形内部的整点的数量,多边形边上的整点的数量,多边形的面积. Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的整点数,b表示
多边形边界上的整点数,s表示多边形的面积。(ps:整点是x,y坐标都是整数)
每条边上的格点数(顶点只算终点) = gcd(abs(x2-x1),abs(y2-y1))
///题意:一个多边形从某个点出发(假设从0,0出发),每次有一个增量(dx,dy)!=(0,0) 经过n次之后又回到了原点
///组成了一个简单多边形.问此时多边形内部的整点的数量,多边形边上的整点的数量,多边形的面积.
///Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的整点数,b表示
///多边形边界上的整点数,s表示多边形的面积。(ps:整点是x,y坐标都是整数)
///每条边上的格点数 = gcd(abs(x2-x1),abs(y2-y1))
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
const int N =;
struct Point {
int x,y;
}p[N];
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int cross(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
int main()
{
int tcase;
scanf("%d",&tcase);
int k = ;
while(tcase--){
int n;
scanf("%d",&n);
p[].x = ,p[].y = ;
int On=,In=;
double area=;
for(int i=;i<=n;i++){
int dx,dy;
scanf("%d%d",&dx,&dy);
p[i].x= p[i-].x+dx;
p[i].y=p[i-].y+dy;
On+=gcd(abs(dx),abs(dy));
}
for(int i=;i<n-;i++){
area+=cross(p[i],p[i+],p[])/2.0;
}
In = (int)(area+-On/);
printf("Scenario #%d:\n%d %d %.1lf\n\n",k++,In,On,area);
}
return ;
}

poj 2954

http://acm.pku.edu.cn/JudgeOnline/problem?id=2954

///题意:完全包含在三角形内的整点有多少
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
struct Point {
int x,y;
}p1,p2,p3;
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int cross(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
int main()
{
while(scanf("%d%d%d%d%d%d",&p1.x,&p1.y,&p2.x,&p2.y,&p3.x,&p3.y)!=EOF){
if(p1.x==&&p1.y==&&p2.x==&&p2.y==&&p3.x==&&p3.y==) break;
double area = fabs(cross(p2,p3,p1)/2.0); int On = gcd(abs(p2.x-p1.x),abs(p2.y-p1.y))+gcd(abs(p3.x-p2.x),abs(p3.y-p2.y))+gcd(abs(p3.x-p1.x),abs(p3.y-p1.y));
printf("%d\n",(int)(area+-On/));
}
return ;
}

poj 1265&&poj 2954(Pick定理)的更多相关文章

  1. poj 1265 Area(Pick定理)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5666   Accepted: 2533 Description ...

  2. POJ 1265 Area (pick定理)

    题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...

  3. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  4. 【POJ】2954 Triangle(pick定理)

    http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...

  5. poj 2954 Triangle(Pick定理)

    链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

  6. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  7. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  8. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  9. [poj 1265]Area[Pick定理][三角剖分]

    题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...

随机推荐

  1. 树&二叉树&哈夫曼树

    1.树 需要注意的两点:n(n>=0)表示结点的个数,m表示子树的个数 (1)n>0时,树的根节点是唯一的. (2)m>0时,子树的个数没有限制. 结点的度和树的度 (1)结点的度是 ...

  2. global js库

    var GLOBAL = {}; GLOBAL.namespace = function(str) { var arr = str.split("."), o = GLOBAL,i ...

  3. 使用selenium监听每一步操作

    1.创建类LogEventListener.java, 如下: package com.demo; import org.openqa.selenium.By; import org.openqa.s ...

  4. GLIBCXX3.4.21 not find

    在执行世界杯的二进制代码和安装keepaway中会遇到GLIBCXX3.4.21 not find的问题,其解决办法就是升级安装GCC. 一.首先查看当前gcc版本 $ strings /usr/li ...

  5. Python全栈工程师(文件操作、编码)

    ParisGabriel                每天坚持手写  一天一篇  决定坚持几年 为了梦想为了信仰     Python人工智能从入门到精通 最近简直要死了 发烧感冒 喉咙痛..... ...

  6. springbootday06 mysql

    一.MySql 1. 数据库概述 数据库( Database )是按照数据结构来组织.存储和管理数据的仓库 . 数据按照特定的格式存储起来,用户可以通过SQL (Structured Query La ...

  7. 爬虫:Scrapy14 - Telnet 终端(Telnet Console)

    Scrapy 提供了内置的 Telnet 终端,以供检查,控制 Scrapy 运行的进程.Telnet 仅仅是一个运行在 Scrapy 进程中的普通 Python 终端.因此你可以在其中做任何是. T ...

  8. unity射线碰撞检测+LayerMask的使用

    射线在unity中是个很方便的东西,对对象查找.多用于碰撞检测(如:子弹飞行是否击中目标).角色移动等提供了很大的帮助,在此做个总结与大家分享下 ,若有不足欢迎吐槽 好了,话补多说啦,直接进入主题: ...

  9. Nginx简单的配置详情

    大致了解Nginx后,直接从配置文件入手: [shell] #定义Nginx运行的用户和用户组 user nginx; #nginx进程数,建议设置为等于CPU总核心数. worker_process ...

  10. docker 生成新的镜像

    下载了ubuntu的初始化镜像,但是没有网络安装包,安装了字后,如果生成新的镜像 sudo docker commit -m "add ifconfig/ping package" ...