BZOJ 2733 【HNOI2012】 永无乡
Description
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。
Input
输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。
对于 20%的数据 n≤1000,q≤1000
对于 100%的数据 n≤100000,m≤n,q≤300000
Output
对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表示所询问岛屿的编号。如果该岛屿不存在,则输出-1。
原来HN省选也有这么水的题233~
这道题这么显然,区间k小数,那么要么就是平衡树,要么就是权值线段树,而这两个东西在合并时都可以启发式合并。所谓的启发式就是每次把两棵树合并的时候,把节点数较少的那一颗给拆了,每个节点依次插入到另一颗树中去。这样由于每次一个节点重新插入时它所在的树大小都会翻倍,这样也就保证了每个节点最多被插入$\log n$次。于是就可以愉快的解决了。时间复杂度$O(n\log ^2 n)$。
UPD:听说这样子的线段树合并是$O(n\log n)$的,因为每个节点只会被访问到子树大小那么多次,因此复杂度为$O(n\log n)$。
我写的权值线段树,有点丑,凑合着看吧。 下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010
#define MAXN maxn*20 using namespace std;
typedef long long llg; int n,m,q,a[maxn],fa[maxn],siz[maxn],fr[maxn];
int rt[maxn],le[MAXN],ri[MAXN],sumv[MAXN],tt; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} int find(int x){return fa[fa[x]]==fa[x]?fa[x]:fa[x]=find(fa[x]);}
void insert(int u,int x){
int l=1,r=n,mid; fr[x]=u;
while(l!=r){
mid=(l+r)>>1; sumv[u]++;
if(x<=mid){
if(!le[u]) le[u]=++tt;
r=mid,u=le[u];
}
else{
if(!ri[u]) ri[u]=++tt;
l=mid+1,u=ri[u];
}
}
sumv[u]++;
} int merge(int u1,int u2){
if(!u1 || !u2) return u1+u2;
le[u1]=merge(le[u1],le[u2]);
ri[u1]=merge(ri[u1],ri[u2]);
sumv[u1]+=sumv[u2];
return u1;
} int work(int u,int k){
if(k>sumv[u]) return -1;
int l=1,r=n,mid;
while(l!=r){
mid=(l+r)>>1;
if(sumv[le[u]]>=k) u=le[u],r=mid;
else k-=sumv[le[u]],l=mid+1,u=ri[u];
}
return fr[l];
} int main(){
File("a");
n=getint(); m=getint(); tt=n;
for(int i=1;i<=n;i++) siz[i]=1,fa[i]=i,rt[i]=i,insert(rt[i],getint());
while(m--){
int x=getint(),y=getint();
x=find(x); y=find(y);
if(siz[x]>siz[y]) swap(x,y);
fa[x]=y; siz[y]+=siz[x];
rt[y]=merge(rt[y],rt[x]);
}
q=getint();
while(q--){
char c=getchar();
while(c!='Q' && c!='B') c=getchar();
int x=getint(),y=getint();
if(!x && !y) continue;
if(c=='B'){
x=find(x); y=find(y);
if(siz[x]>siz[y]) swap(x,y);
fa[x]=y; siz[y]+=siz[x];
rt[y]=merge(rt[y],rt[x]);
}
else printf("%d\n",work(rt[find(x)],y));
}
return 0;
}
BZOJ 2733 【HNOI2012】 永无乡的更多相关文章
- BZOJ 2733: [HNOI2012]永无乡 启发式合并treap
2733: [HNOI2012]永无乡 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- bzoj 2733: [HNOI2012]永无乡 离线+主席树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1167 Solved: 607[Submit][Status ...
- BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)
不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...
- BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]
2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...
- bzoj 2733: [HNOI2012]永无乡 -- 线段树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...
- Bzoj 2733: [HNOI2012]永无乡 数组Splay+启发式合并
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3955 Solved: 2112[Submit][Statu ...
- Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...
- 线段树合并+并查集 || BZOJ 2733: [HNOI2012]永无乡 || Luogu P3224 [HNOI2012]永无乡
题面:P3224 [HNOI2012]永无乡 题解: 随便写写 代码: #include<cstdio> #include<cstring> #include<iostr ...
- bzoj 2733: [HNOI2012]永无乡
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- bzoj 2733 : [HNOI2012]永无乡 (线段树合并)
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
随机推荐
- 0. CMMI快乐之旅——内容简介及目录
摘要: 这是我几年前发表于 www.cmmionline.net 网站(现在升级为www.umlonline.org 网站)数十篇文章,全方位分享了我对CMMI的理解,现我打算整理这些文章陆续在CSD ...
- MVC数据库数据分页显示
首先从数据库获取数据 using System; using System.Collections.Generic; using System.Linq; using System.Web; usin ...
- 表格table嵌套,边框合并问题
[问题] 外层table与内层table嵌套,内外表格都需边框时,设置“border=1”,但边框会重复,造成某些地方边框粗,有些地方边框细的问题. [解决办法]: 外表格样式: <tabl ...
- Symantec Backup Exec备份作业服务器盘符变更
Symantec Backup Exec的备份作业中,如果某个服务器的磁盘更改了盘符,如果不修改备份作业里面的相关配置,就会出现类似下面的错误信息,如下截图所示 因为这台服务器上我们将原先的G盘的盘符 ...
- Java注释中TODO/FIXME/XXX的含义
转自:http://free0007.iteye.com/blog/1886526 特殊注释: 1 TODO 表示需要实现,但目前还未实现的功能 2 XXX 勉强可以工作,但是性能差等原因 3 FIX ...
- ps, top, pstree
ps 查看当前终端所启动的进程, 不加选项只查看当前终端的进程 PID TTY TIME CMD 2398 pts/1 00:00:00 bash 3625 pts/1 00:00:00 ps #PI ...
- CentOS 6.5下利用Rsyslog+LogAnalyzer+MySQL部署日志服务器
一.简介 LogAnalyzer 是一款syslog日志和其他网络事件数据的Web前端.它提供了对日志的简单浏览.搜索.基本分析和一些图表报告的功能.数据可以从数据库或一般的syslog文本文件中获取 ...
- Linux aclocal
一.简介 二.安装 三.常用指令 1)安装m4 aclocal -I m4 2)查看aclocal的路径 aclocal --print-ac-dir 四.常见问题 1) LIBTOOL is und ...
- Linux laptop-mode 电池供电时鼠标间歇失灵问题解决
/*本文地址http://www.cnblogs.com/go2bed/p/4298689.html */ 这个问题网上已经有很多人讨论过了.例如<解决ubuntu使用笔记本自带电池后鼠标断电或 ...
- [转]Bootstrap 3.0.0 with ASP.NET Web Forms – Step by Step – Without NuGet Package
本文转自:http://www.mytecbits.com/microsoft/dot-net/bootstrap-3-0-0-with-asp-net-web-forms In my earlier ...