【HNOI2013】消毒
题面
题解
当只有二维时,就是一个二分图匹配的板子题
三维的时候就很好做了,暴力枚举一维的情况,因为\(\min(x,y,z) = \sqrt{5000} < 18\),于是时间复杂度有保证
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(5010);
struct edge { int next, to; } e[maxn];
int head[maxn], e_num, a, b, c, Min, pos[4][maxn], vis[maxn], match[maxn], clean[maxn], ans, cnt, T;
inline void add_edge(int from, int to) { e[++e_num] = (edge) {head[from], to}; head[from] = e_num; }
bool dfs(int x)
{
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(vis[to]) continue; vis[to] = true;
if(!match[to] || dfs(match[to])) return match[to] = x, true;
}
return false;
}
inline void Doit(int x)
{
using std::fill; e_num = 0;
fill(head + 1, head + b + 1, 0);
fill(match + 1, match + c + 1, 0);
fill(clean + 1, clean + a + 1, 1);
int res = 0;
for(RG int i = 0; i < a; i++)
if(x & (1 << i)) clean[i + 1] = 0, ++res;
for(RG int i = 1; i <= cnt; i++)
if(clean[pos[1][i]]) add_edge(pos[2][i], pos[3][i]);
for(RG int i = 1; i <= b; i++)
{
fill(vis + 1, vis + c + 1, 0);
if(dfs(i)) ++res;
}
ans = std::min(ans, res);
}
int main()
{
T = read();
while(T--)
{
cnt = 0; ans = 0x3f3f3f3f;
a = read(); b = read(); c = read(); Min = std::min(std::min(a, b), c);
for(RG int i = 1, x; i <= a; i++)
for(RG int j = 1; j <= b; j++)
for(RG int k = 1; k <= c; k++)
if((x = read())) ++cnt, pos[1][cnt] = i, pos[2][cnt] = j, pos[3][cnt] = k;
using std::swap;
if(Min == b) swap(a, b), swap(pos[1], pos[2]);
if(Min == c) swap(a, c), swap(pos[1], pos[3]);
for(RG int i = 0; i < (1 << a); i++) Doit(i);
printf("%d\n", ans);
}
return 0;
}
【HNOI2013】消毒的更多相关文章
- [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)
3140: [Hnoi2013]消毒 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 676[Submit][Status] ...
- bzoj 3140: [Hnoi2013]消毒
3140: [Hnoi2013]消毒 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数 ...
- P3231 [HNOI2013]消毒
P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...
- 3140:[HNOI2013]消毒 - BZOJ
题目描述 Description 最近在生物实验室工作的小 T 遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为 a*b*c,a.b.c均为正整数.为了实验的方便,它被划 ...
- bzoj3140: [Hnoi2013]消毒
Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c ...
- 【刷题】BZOJ 3140 [Hnoi2013]消毒
Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc个单位立 ...
- BZOJ3140:[HNOI2013]消毒——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3140 https://www.luogu.org/problemnew/show/P3231 最近在 ...
- bzoj3140: [Hnoi2013]消毒(二分图)
题目描述 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c个单位立方体区 ...
- [luogu3231 HNOI2013] 消毒 (二分图最小点覆盖)
传送门 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc ...
- [HNOI2013]消毒
题目大意: 网址:https://www.luogu.org/problemnew/show/3231 大意:a×b×c的三维空间里有a×b×c个点(x,y,z),其中有些点需要被消除. 消除的方法为 ...
随机推荐
- [VS2008] 安装 AnkhSVN 后,选项中选择它,Pending Changes 窗口一闪而过,源代码管理工具自动跳回 【None】
执行以下命令以修复: "C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe" /re ...
- voltdb数据库持久性,扩展集群
之前在git上下载的voltdb,以及在官网下载的社区版voltdb均不支持持久性事务,和扩展集群,今天下载了企业试用版voltdb,安装过程不再赘述,记录一下我的使用过程 持久性测试 以前的 vol ...
- 优化REST Framework 的 路由 APIView 和ViewSetMixin
APIview: 我们经常写的是view 这个APIview继承了我们的view,并且对请求进来的信息进行设置, 在APIView这个例子中,调用了drf本身的serializer以及Respons ...
- UNIX高级环境编程(9)进程控制(Process Control)- fork,vfork,僵尸进程,wait和waitpid
本章包含内容有: 创建新进程 程序执行(program execution) 进程终止(process termination) 进程的各种ID 1 进程标识符(Process Identifie ...
- python常见释疑(有别于报错)(不定时更新)
文:铁乐与猫 01.在cmd运行py脚本后,直接回到了提示符,没有任何输出,看起来像是并没有运行一样. 答:你的感觉很可能是对的,但脚本很可能己经正常运行,只是你的代码里面很可能没有给出print提示 ...
- IP地址分类和网段区分的知识
IP地址分类/IP地址10开头和172开头和192开头的区别/判断是否同一网段 简单来说在公司或企业内部看到的就基本都是内网IP,ABC三类IP地址里的常见IP段. 每个IP地址都包含两部分,即网络号 ...
- tomcat7换端口号调试
1.C:\tomcat\conf\server.xml中修改端口号 2.C:\tomcat\bin\startup.bat批处理文件启动tomcat 3.用ctrl+c结束批处理文件 4.调试结束
- python 统计学的各种检验
1.使用python中的Numpy进行t检验 http://www.atyun.com/7476.html 2.scipy中的卡方检验 http://wiki.mbalib.com/wiki/%E5% ...
- NSKeyValueObserving.m
https://github.com/farcaller/cocotron/blob/af740de86c9bee84c59ffc74d27e5df9e22e1391/Foundation/NSKey ...
- elasticSearch curl 语法总结
#创建索引a.put创建curl -XPUT http://localhost:9200/shb01/student/1-d'{"name":"jack",&q ...