MindSpore 初探, 使用LeNet训练minist数据集
如题所述,官网地址:
https://www.mindspore.cn/tutorial/zh-CN/r1.2/quick_start.html
数据集下载:
mkdir -p ./datasets/MNIST_Data/train ./datasets/MNIST_Data/test
wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-labels-idx1-ubyte
wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-images-idx3-ubyte
wget -NP ./datasets/MNIST_Data/test https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-labels-idx1-ubyte
wget -NP ./datasets/MNIST_Data/test https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-images-idx3-ubyte
tree ./datasets/MNIST_Data

个人整合后的代码:
#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="CPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, False)
test_net(net, model, mnist_path)
训练结果:

epoch: 1 step: 125, loss is 2.2982173
epoch: 1 step: 250, loss is 2.296105
epoch: 1 step: 375, loss is 2.3065567
epoch: 1 step: 500, loss is 2.3062077
epoch: 1 step: 625, loss is 2.3096561
epoch: 1 step: 750, loss is 2.2847052
epoch: 1 step: 875, loss is 2.284628
epoch: 1 step: 1000, loss is 1.8122461
epoch: 1 step: 1125, loss is 0.4140602
epoch: 1 step: 1250, loss is 0.25238502
epoch: 1 step: 1375, loss is 0.17819008
epoch: 1 step: 1500, loss is 0.3202765
epoch: 1 step: 1625, loss is 0.12312577
epoch: 1 step: 1750, loss is 0.11027573
epoch: 1 step: 1875, loss is 0.2680659
{'Accuracy': 0.9598357371794872}

为网络导入模型参数,并进行预测:
本步骤与上面的训练步骤相关,需要前面设置好的数据集,并且需要前面已经训练好的网络参数。
import os
import numpy as np """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal
from mindspore import Tensor # 导入模型参数
from mindspore.train.serialization import load_checkpoint, load_param_into_net """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore import Model def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
"""
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5()
# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)
# 构建模型
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) # 加载已经保存的用于测试的模型
param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
# 加载参数到网络中
load_param_into_net(net, param_dict) _batch_size = 8
# 定义测试数据集,batch_size设置为1,则取出一张图片
mnist_path = "./datasets/MNIST_Data"
ds_test = create_dataset(os.path.join(mnist_path, "test"), batch_size=_batch_size).create_dict_iterator()
data = next(ds_test) # images为测试图片,labels为测试图片的实际分类
images = data["image"].asnumpy()
labels = data["label"].asnumpy() # 使用函数model.predict预测image对应分类
output = model.predict(Tensor(data['image']))
predicted = np.argmax(output.asnumpy(), axis=1) # 输出预测分类与实际分类
for i in range(_batch_size):
print(f'Predicted: "{predicted[i]}", Actual: "{labels[i]}"')
运行结果:

MindSpore 初探, 使用LeNet训练minist数据集的更多相关文章
- 多层感知机训练minist数据集
MLP .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1p ...
- Window10 上MindSpore(CPU)用LeNet网络训练MNIST
本文是在windows10上安装了CPU版本的Mindspore,并在mindspore的master分支基础上使用LeNet网络训练MNIST数据集,实践已训练成功,此文为记录过程中的出现问题: ( ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
- LeNet训练MNIST
jupyter notebook: https://github.com/Penn000/NN/blob/master/notebook/LeNet/LeNet.ipynb LeNet训练MNIST ...
- 单向LSTM笔记, LSTM做minist数据集分类
单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入 ...
- 用CNN及MLP等方法识别minist数据集
用CNN及MLP等方法识别minist数据集 2017年02月13日 21:13:09 hnsywangxin 阅读数:1124更多 个人分类: 深度学习.keras.tensorflow.cnn ...
- Fast RCNN 训练自己数据集 (1编译配置)
FastRCNN 训练自己数据集 (1编译配置) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https:/ ...
- 使用py-faster-rcnn训练VOC2007数据集时遇到问题
使用py-faster-rcnn训练VOC2007数据集时遇到如下问题: 1. KeyError: 'chair' File "/home/sai/py-faster-rcnn/tools/ ...
- BP算法在minist数据集上的简单实现
BP算法在minist上的简单实现 数据:http://yann.lecun.com/exdb/mnist/ 参考:blog,blog2,blog3,tensorflow 推导:http://www. ...
随机推荐
- 小米 红米 Redmi MIUI 5G开关
小米 红米 Redmi MIUI 5G开关 1.打开手机拨号界面输入 *#*#54638#*#* 之后拨号界面底部会显示display 5G network menu (显示5G网络菜单) 注意:先是 ...
- (二)requests-爬取国家药监局生产许可证数据
首先访问这个页面 url = 'http://125.35.6.84:81/xk/' 我们的目标是抓取这里的每一个企业的详情页数据,但是可以发现这里只有企业的简介信息,所以这就意味着我们要发送两次ge ...
- 项目管理--PMBOK 读书笔记(13)【项目相关方管理】
1.相关方分矩阵 工具与技术 核查表 又叫检查表,计数表,收集属性数据,解决问题. 焦点小组&访谈: 特点:慢,焦点小组是一对多,访谈时多对多. 抽样统计&控制图: 控制图反应 ...
- Python 潮流周刊#56:NumPy 2.0 里更快速的字符串函数(摘要)
本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章.教程.开源项目.软件工具.播客和视频.热门话题等内容.愿景:帮助所有读者精进 Python 技术,并增长职 ...
- SpringBoot的Security和OAuth2的使用
创建项目 先创建一个spring项目. 然后编写pom文件如下,引入spring-boot-starter-security,我这里使用的spring boot是2.4.2,这里使用使用spring- ...
- CSS3随机背景图片切换特效
Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` CSS3随机背景图片切换特效 日期:2018-5-16 阿 ...
- Xcode编译错误看不到错误详情
问题描述 Xcode提示错误后想详细看报错信息无论如何双击都不见弹出错误详情. 解决办法 不知道是bug还是苹果婊又自作主张改变用户习惯了,需要点击navigator最右边的一个图标,在里面找到相应的 ...
- 十大java应用服务器(web server)总结
java应用服务器(web server),是指运行java程序的web应用服务器软件,不包括nginx.Apache等通用web服务器软件. 一.Tomcat Tomcat是Apache 软件基金会 ...
- 了解Microsoft Media Foundation
关于Microsoft Media Foundation 是什么 Microsoft Media Foundation是用来处理(创建.修改.传输.合成)多媒体数据(音视频)的一个平台. 有什么用 M ...
- Kubernetes(八)安全认证
安全认证 本章主要介绍Kubernetes的安全认证机制. 1. 访问控制概述 Kubernetes作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务.所谓的安全性其实就是保证对Kube ...