L1范式和L2范式
正则化(Regularization)
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。
L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1α||w||1即为L1正则化项。
下图是Python中Ridge回归的损失函数,式中加号后面一项α||w||22α||w||22即为L2正则化项。
一般回归分析中回归ww表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:
- L1正则化是指权值向量ww中各个元素的绝对值之和,通常表示为||w||1||w||1
- L2正则化是指权值向量ww中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2||w||2
一般都会在正则化项之前添加一个系数,Python中用αα表示,一些文章也用λλ表示。这个系数需要用户指定。
那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。
- L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
- L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合
稀疏模型与特征选择
上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?
稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。
L1和L2正则化的直观理解
这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合。
L1正则化和特征选择
假设有如下带L1正则化的损失函数:
其中J0J0是原始的损失函数,加号后面的一项是L1正则化项,αα是正则化系数。注意到L1正则化是权值的绝对值之和,JJ是带有绝对值符号的函数,因此JJ是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0J0后添加L1正则化项时,相当于对J0J0做了一个约束。令L=α∑w|w|L=α∑w|w|,则J=J0+LJ=J0+L,此时我们的任务变成在LL约束下求出J0J0取最小值的解。考虑二维的情况,即只有两个权值w1w1和w2w2,此时L=|w1|+|w2|L=|w1|+|w2|对于梯度下降法,求解J0J0的过程可以画出等值线,同时L1正则化的函数LL也可以在w1w2w1w2的二维平面上画出来。如下图:
图1 L1正则化
图中等值线是J0J0的等值线,黑色方形是LL函数的图形。在图中,当J0J0等值线与LL图形首次相交的地方就是最优解。上图中J0J0与LL在LL的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w)(w1,w2)=(0,w)。可以直观想象,因为LL函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0J0与这些角接触的机率会远大于与LL其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。
而正则化前面的系数αα,可以控制LL图形的大小。αα越小,LL的图形越大(上图中的黑色方框);αα越大,LL的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w)(w1,w2)=(0,w)中的ww可以取到很小的值。
类似,假设有如下带L2正则化的损失函数:
同样可以画出他们在二维平面上的图形,如下:
图2 L2正则化
二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0J0与LL相交时使得w1w1或w2w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。
L2正则化和过拟合
拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。
那为什么L2正则化可以获得值很小的参数?
以线性回归中的梯度下降法为例。假设要求的参数为θθ,hθ(x)hθ(x)是我们的假设函数,那么线性回归的代价函数如下:
那么在梯度下降法中,最终用于迭代计算参数θθ的迭代式为:
其中αα是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:
其中λλ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θjθj都要先乘以一个小于1的因子,从而使得θjθj不断减小,因此总得来看,θθ是不断减小的。
最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。
正则化参数的选择
L1正则化参数
通常越大的λλ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。
假设有如下带L1正则化项的代价函数:
其中xx是要估计的参数,相当于上文中提到的ww以及θθ. 注意到L1正则化在某些位置是不可导的,当λλ足够大时可以使得F(x)F(x)在x=0x=0时取到最小值。如下图:
图3 L1正则化参数的选择
分别取λ=0.5λ=0.5和λ=2λ=2,可以看到越大的λλ越容易使F(x)F(x)在x=0x=0时取到最小值。
L2正则化参数
从公式5可以看到,λλ越大,θjθj衰减得越快。另一个理解可以参考图2,λλ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。
Reference
过拟合的解释:
https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss2.html
正则化的解释:
https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss1.html
正则化的解释:
http://blog.csdn.net/u012162613/article/details/44261657
正则化的数学解释(一些图来源于这里):
http://blog.csdn.net/zouxy09/article/details/24971995
L1范式和L2范式的更多相关文章
- L1范式和L2范式的区别
L1 and L2 regularization add a cost to high valued weights to prevent overfitting. L1 regularization ...
- L1、L2范式及稀疏性约束
L1.L2范式及稀疏性约束 假设需要求解的目标函数为: E(x) = f(x) + r(x) 其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型 ...
- 数据库设计范式2——BC范式和第四范式
我在很久之前的一篇文章中介绍了数据库模型设计中的基本三范式,今天,我来说一说更高级的BC范式和第四范式. 回顾 我用大白话来回顾一下什么是三范式: 第一范式:每个表应该有唯一标识每一行的主键. 第二范 ...
- 【mysql的设计与优化专题(2)】数据中设计中的范式与反范式
设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小.但是有些时候一昧的追求范式减少冗余,反而会降低数据读写 ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- 【机器学习】--鲁棒性调优之L1正则,L2正则
一.前述 鲁棒性调优就是让模型有更好的泛化能力和推广力. 二.具体原理 1.背景 第一个更好,因为当把测试集带入到这个模型里去.如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大, ...
- 【机器学习】--线性回归中L1正则和L2正则
一.前述 L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 二.原理 L1正则:Lasso Regression L2正则:Ridge Regression 总结: 经验值 ...
- L1范数与L2范数
L1范数与L2范数 L1范数与L2范数在机器学习中,是常用的两个正则项,都可以防止过拟合的现象.L1范数的正则项优化参数具有稀疏特性,可用于特征选择:L2范数正则项优化的参数较小,具有较好的抗干 ...
随机推荐
- iOS - 常用本机URL跳转设置
import UIKit class ViewController: UIViewController { override func touchesBegan(_ touches: Set<U ...
- swift -2018 - 创建PCH文件
第一种:简单方式 在swift文件 创建一个OC文件 1> command + n 2> 3> 此时 你会发现有提示 让你创建桥接文件 4>删除 OC文件 5> 直接复制 ...
- SHA1加密工具
package com.wx.project.util; import java.security.MessageDigest; /* * sha1 加密算法 * 网上copy 一大堆 */ publ ...
- Mac下GitHub以及GitHub Desktop使用实战
Hub是一个面向开源及私有软件项目的托管平台.开源代码库以及版本控制系统,因为只支持 Git 作为唯一的版本库格式进行托管,故名 GitHub.通常在Windows下使用GitHub的教程是非常多的, ...
- Js学习(2)数据类型
Js共有六种数据类型(ES6又增加了第七种Symbol类型的值): 原始类型:数值,字符串,布尔值 合成类型:对象(object):各种值组成的集合 其他undefined,null 对象又可以分成三 ...
- MVC报错:找到多个与名为“Home”的控制器匹配的类型。
错误原因是:在根目录中的Controller中有HomeController,而在Areas中也有一个HomeController,只是他们的命名空间不一样. 这样的话,只需要在对应的路由注册中加入命 ...
- [z]表空间对应文件的AUTOEXTEND ON NEXT指定的值对性能的影响
创建表空间的时候指定的数据文件可以设为自动扩展,以及每次扩展多少容量,如果发现在大数据量插入的时候非常慢,可能的原因是NEXT指定的值太小.下面来模拟一下这个过程:1,创建一个表空间:CREATE T ...
- Materix3*3
][],][],][]) { ;i<;i++) { ;j<;j++) { res[i][j]= aa[i][] * bb[][j] + aa[i][] *bb[][j] + aa[i][] ...
- 2Y - sort
给你n个整数,请按从大到小的顺序输出其中前m大的数. Input 每组测试数据有两行,第一行有两个数n,m(0<n,m<1000000),第二行包含n个各不相同,且都处于区间[-5000 ...
- BOM心得
Brower Objects Model浏览器对象模型 ps: 到现在也没个正式标准.............. window是BOM的顶级对象,但一般可以省略 一.Location对象 相当于浏览器 ...